
7. Lecture 7: 2.4 The inverse of a matrix

Def A transformation T :X→Y is called invertible if the equation T (x) = y has a unique
solution x ∈ X for each y ∈ Y . An inverse S to T is a map such that S(T (x)) = x and
T (S(y))=y for all x∈X and y∈Y. T is invertible if and only if it has an inverse denoted T−1.

Def An n×n matrix is called invertible if the linear transformation T (x)=Ax is invertible.
In Lecture 4 we saw that then the inverse is also a linear map. We denote the n× n matrix
of the inverse linear map by A−1. It hence satisfies T−1(y) = A−1y.

Th The n× n matrix A is invertible if and only if there is a matrix A−1 such that

A−1A = AA−1 = I, (7.1)

where I is the identity matrix.
Pf If T (x)=Ax is invertible then the equation T−1(T (x))=x is equivalent to A−1Ax=x=Ix.
However if this holds for all x it follows that A−1A=I. Similarly one proves that AA−1 =I.
On the other hand suppose now that T (x)=Ax and there is a matrix A−1 satisfying (7.1).
We claim that x = A−1y is a unique solution to Ax = y for every y. In fact, it is a solution
since AA−1y = Iy = y, and the solution is unique since A−1Ax = Ix = x.

We could alternatively have taken the existence of a matrix A−1 satisfying (7.1) as the defi-
nition of invertibility and inverse of A.

Th Let A=

[
a b
c d

]
. If ad− bc 6= 0 then A is invertible and A−1 =

1

ad− bc

[
d −b
−c a

]
.

If ad− bc = 0 then A is not invertible.
Pf If ad− bc 6= 0 its easy to check that AA−1 = A−1A = I:[

a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
.

If ad− bc = 0 then (a, b) and (c, d) are proportional and the system

ax1 + bx2 = y1

cx1 + dx2 = y2

does not have a unique solution so A is not invertible.

Ex Solve the system −7x1 + 3x2 = 2

5x1 − 2x2 = 1

A=

[
−7 3
5 −2

]
, A−1 =

1

7·2− 3·5

[
−2 −3
−5 −7

]
=

[
2 3
5 7

]
so

[
x1
x2

]
=

[
2 3
5 7

][
2
1

]
=

[
7
17

]

Th (BA)−1 =A−1B−1 and (A−1)−1 =A.
Pf This is clear from the composition of transformations, or from the associative property
of matrix multiplication: A−1B−1BA=A−1IA=A−1A=I and BAA−1B−1=BIB−1=I.
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How to calculate the inverse

If we can solve Ax = y for any y we will get the inverse x = A−1y.

Ex Find the inverse of A =

 1 0 0
−3 0 1
0 1 0

.

Sol We perform row operations to solve the system Ax = y:


x1 = y1

−3x1 + x3 = y2

x2 = y3

⇔



x1 = y1

x3 =3y1+ y2

x2 = y3

⇔



x1 = y1

x2 = y3

x3 = 3y1+ y2

adding three times the first equation to the second and then switching the second and
the third equations. The system on the right is x = A−1y so we must have that A−1 = 1 0 0

0 0 1
3 1 0

. Its easy to check that AA−1 = I.

The calculations above can be performed without writing out the variables as row operations
directly to the augmented matrix

[
A I

]
; 1 0 0 1 0 0

−3 0 1 0 1 0
0 1 0 0 0 1

 ∼ (2)+ 3(1)

 1 0 0 1 0 0
0 0 1 3 1 0
0 1 0 0 0 1

 ∼ (3)
(2)

 1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 3 1 0


We have found an algorithm for determining if A is invertible and finding the inverse:
Calculate the reduced row echelon form of the augmented matrix

[
A I

]
. If it is of the

form
[
I B

]
then A is invertible and A−1 = B. Otherwise A is not invertible.

One can also prove that this works multiplying by elementary matrices which correspond

to elementary row operations. Let E1 =

 1 0 0
3 1 0
0 0 1

, E2 =

 1 0 0
0 0 1
0 1 0


Multiplying by E1 adds 3 times row one to row two:

E1A =

 1 0 0
3 1 0
0 0 1

 1 0 0
−3 0 1
0 1 0

=

 1 0 0
0 0 1
0 1 0


Multiplying by E2 switches row two and row three:

E2(E1A) =

 1 0 0
0 0 1
0 1 0

 1 0 0
0 0 1
0 1 0

 =

 1 0 0
0 1 0
0 0 1

 = I

Hence
E2E1A = I

and multiplying both sides by A−1 to the right gives since AA−1 = I and IA−1 =A−1:

E2E1I = A−1

Hence a sequence of elementary row operations that reduce A to I reduce I to A−1. This
argument assumed that A was invertible, but it also follows since each elementary matrix is
invertible since the row operations are reversible and hence multiplying by the inverse of the
elementary matrices gives A = E−1

1 E−1
2 so A is invertible since it is a product of invertible.
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Geometrical interpretation of the determinant

Th Let A=

[
a b
c d

]
. If ad− bc 6= 0 then A is invertible and A−1 =

1

ad− bc

[
d −b
−c a

]
.

If ad− bc = 0 then A is not invertible.

Def The determinant of the 2 matrix A=

[
a b
c d

]
is the number det (A) = ad− bc.

We have seen from the proof of the above theorem or directly that the determinant is 0 is
equivalent to that the columns or rows are parallel. Now we will give a geometric meaning
to the magnitude of the determinant.

Let v =

[
a
c

]
and w =

[
b
d

]
be the column vectors of A, and let vrot =

[
−c
a

]
be the rotation

of the vector v by π/2 counterclockwise. We see that by the definition of the dot product

det (A) = ad− bc = vrot ·w = ‖vrot‖ ‖w‖ cosφ,

where φ is the angle between vrot and w. If θ is the angle between v and w then θ = π/2−φ
and cos (π/2− θ) = sin θ, and ‖vrot‖ = ‖v‖, so

det (A) = ‖v‖ ‖w‖ sin θ,

We conclude that ∣∣ det (A)
∣∣ = Area of parallelogram with sides v and w.

Question What is the area of the image of the unit square by the map with matrix A above?

Question What is the inverse of a scaling by a factor 3 and what is its matrix?

The transpose of an orthogonal matrix

The transpose AT is the matrix with rows and columns interchanged, (AT )ij =(A)ji

Ex If A =

 1 2 3
−2 0 −1
4 5 2

 then AT =

 1 −2 4
2 0 5
3 −1 2

.

Def An n× n matrix

Q =

 | | |
q1 q2 · · ·qn

| | |


is called orthogonal if the column vectors are orthonormal, i.e. for all i, j

qi · qj = δij, where δij =

{
1, if i = j,

0, if i 6= j,
.

An equivalent way to formulate this is that QTQ = I. This is because the columns of Q
become the rows of QT and the matrix product is formed by taking the dot product of the
rows of QT by the columns of Q, by the row column rule.

Question What is the inverse of a rotation counterclockwise π/2 and what is its matrix?



4

Summary and Conceptual Questions

Def A transformation T :X→Y is called invertible if the equation

T (x) = y, has a unique solution x∈X for each y∈Y .

An inverse T−1 to T is a map such that

T−1(T (x))=x, and T (T−1(y))=y, for all x∈X, y∈Y. (7.2)

T is invertible if and only if it has an inverse T−1.
Def A matrix A is called invertible if the linear transformation T (x) = Ax is invertible.
The inverse is also linear and we denote its matrix by A−1 so T−1(y)=A−1y.

Th An n× n matrix A is invertible if and only if there is an n× n matrix A−1 such that

A−1A = AA−1 = I, where I is the identity matrix. (7.3)

In fact (7.2) is equivalent to A−1Ax=x and AA−1y=y for all x and y which is equivalent
to (7.3). We could alternatively have taken the existence of a matrix A−1 satisfying (7.3) as
the definition of invertibility, instead of the map T (x) = Ax having an inverse satisfying (7.2).

Th Let A=

[
a b
c d

]
. If ad− bc 6= 0 then A is invertible and A−1 =

1

ad− bc

[
d −b
−c a

]
.

To find the inverse of A we perform row operations to solve the system Ax=y for x=By.
Then A−1 =B.

Ex Find the inverse of A =

 1 0 0
−3 0 1

0 1 0

.

Sol 


x1 = y1

−3x1 + x3 = y2

x2 = y3

⇔



x1 = y1

x3 =3y1+ y2

x2 = y3

⇔



x1 = y1

x2 = y3

x3 = 3y1+ y2

adding three times the first equation to the second and then switching the second and third.
The system on the right is x = A−1y so we must have that

A−1 =

 1 0 0
0 0 1
3 1 0

. Its easy to check that AA−1 = I.

The calculations above can be performed without writing out the variables as row operations
directly to the augmented matrix

[
A I

]
; 1 0 0 1 0 0

−3 0 1 0 1 0
0 1 0 0 0 1

 ∼ (2)+ 3(1)

 1 0 0 1 0 0
0 0 1 3 1 0
0 1 0 0 0 1

 ∼ (3)
(2)

 1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 3 1 0


We have found an algorithm for determining if A is invertible and finding the inverse:
Calculate the reduced row echelon form of the augmented matrix

[
A I

]
.

If it is of the form
[
I B

]
then A is invertible and A−1 = B. Otherwise A is not invertible.
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