7. Lecture 7: 2.4 The inverse of a matrix

Def A transformation $T: X \rightarrow Y$ is called invertible if the equation $T(\mathbf{x})=\mathbf{y}$ has a unique solution $\mathbf{x} \in X$ for each $\mathbf{y} \in Y$. An inverse S to T is a map such that $S(T(\mathbf{x}))=\mathbf{x}$ and $T(S(\mathbf{y}))=\mathbf{y}$ for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y . T$ is invertible if and only if it has an inverse denoted T^{-1}.

Def An $n \times n$ matrix is called invertible if the linear transformation $T(\mathbf{x})=A \mathbf{x}$ is invertible. In Lecture 4 we saw that then the inverse is also a linear map. We denote the $n \times n$ matrix of the inverse linear map by A^{-1}. It hence satisfies $T^{-1}(\mathbf{y})=A^{-1} \mathbf{y}$.

Th The $n \times n$ matrix A is invertible if and only if there is a matrix A^{-1} such that

$$
\begin{equation*}
A^{-1} A=A A^{-1}=I, \tag{7.1}
\end{equation*}
$$

where I is the identity matrix.
Pf If $T(\mathbf{x})=A \mathbf{x}$ is invertible then the equation $T^{-1}(T(\mathbf{x}))=\mathbf{x}$ is equivalent to $A^{-1} A \mathbf{x}=\mathbf{x}=I \mathbf{x}$. However if this holds for all \mathbf{x} it follows that $A^{-1} A=I$. Similarly one proves that $A A^{-1}=I$. On the other hand suppose now that $T(\mathbf{x})=A \mathbf{x}$ and there is a matrix A^{-1} satisfying (7.1). We claim that $\mathbf{x}=A^{-1} \mathbf{y}$ is a unique solution to $A \mathbf{x}=\mathbf{y}$ for every \mathbf{y}. In fact, it is a solution since $A A^{-1} \mathbf{y}=I \mathbf{y}=\mathbf{y}$, and the solution is unique since $A^{-1} A \mathbf{x}=I \mathbf{x}=\mathbf{x}$.

We could alternatively have taken the existence of a matrix A^{-1} satisfying (7.1) as the definition of invertibility and inverse of A.

Th Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$ then A is invertible and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
If $a d-b c=0$ then A is not invertible.
Pf If $a d-b c \neq 0$ its easy to check that $A A^{-1}=A^{-1} A=I$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right] .
$$

If $a d-b c=0$ then (a, b) and (c, d) are proportional and the system

$$
\begin{aligned}
& a x_{1}+b x_{2}=y_{1} \\
& c x_{1}+d x_{2}=y_{2}
\end{aligned}
$$

does not have a unique solution so A is not invertible.
Ex Solve the system

$$
\begin{array}{r}
-7 x_{1}+3 x_{2}=2 \\
5 x_{1}-2 x_{2}=1
\end{array}
$$

$$
A=\left[\begin{array}{cc}
-7 & 3 \\
5 & -2
\end{array}\right], A^{-1}=\frac{1}{7 \cdot 2-3 \cdot 5}\left[\begin{array}{cc}
-2 & -3 \\
-5-7
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right] \text { so }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 \\
17
\end{array}\right]
$$

$\operatorname{Th}(B A)^{-1}=A^{-1} B^{-1}$ and $\left(A^{-1}\right)^{-1}=A$.
Pf This is clear from the composition of transformations, or from the associative property of matrix multiplication: $A^{-1} B^{-1} B A=A^{-1} I A=A^{-1} A=I$ and $B A A^{-1} B^{-1}=B I B^{-1}=I$.

How to calculate the inverse

If we can solve $A \mathbf{x}=\mathbf{y}$ for any \mathbf{y} we will get the inverse $\mathbf{x}=A^{-1} \mathbf{y}$.
Ex Find the inverse of $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
Sol We perform row operations to solve the system $A \mathbf{x}=\mathbf{y}$:

$$
\left\{\begin{array} { r l r l }
{ x _ { 1 } } & { = y _ { 1 } } \\
{ - 3 x _ { 1 } + x _ { 3 } } & { = y _ { 2 } } \\
{ x _ { 2 } } & { = } & { y _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array} { r l r l }
{ x _ { 1 } } & { = y _ { 1 } } \\
{ x _ { 3 } } & { = 3 y _ { 1 } + y _ { 2 } } \\
{ x _ { 2 } } & { = } & { y _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{rlr}
x_{1} & =y_{1} \\
x_{2} & = & y_{3} \\
& x_{3} & =3 y_{1}+y_{2}
\end{array}\right.\right.\right.
$$

adding three times the first equation to the second and then switching the second and the third equations. The system on the right is $\mathbf{x}=A^{-1} \mathbf{y}$ so we must have that $A^{-1}=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 1 & 0\end{array}\right]$. Its easy to check that $A A^{-1}=I$.
The calculations above can be performed without writing out the variables as row operations directly to the augmented matrix $[A I]$;

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim(2)+3(1)\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim \begin{gathered}
(3) \\
(2)
\end{gathered}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right]
$$

We have found an algorithm for determining if A is invertible and finding the inverse:
Calculate the reduced row echelon form of the augmented matrix [$A I$]. If it is of the form $\left[\begin{array}{ll}I & B\end{array}\right]$ then A is invertible and $A^{-1}=B$. Otherwise A is not invertible.

One can also prove that this works multiplying by elementary matrices which correspond to elementary row operations. Let $E_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Multiplying by E_{1} adds 3 times row one to row two:
$E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Multiplying by E_{2} switches row two and row three:
$E_{2}\left(E_{1} A\right)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
Hence

$$
E_{2} E_{1} A=I
$$

and multiplying both sides by A^{-1} to the right gives since $A A^{-1}=I$ and $I A^{-1}=A^{-1}$:

$$
E_{2} E_{1} I=A^{-1}
$$

Hence a sequence of elementary row operations that reduce A to I reduce I to A^{-1}. This argument assumed that A was invertible, but it also follows since each elementary matrix is invertible since the row operations are reversible and hence multiplying by the inverse of the elementary matrices gives $A=E_{1}^{-1} E_{2}^{-1}$ so A is invertible since it is a product of invertible.

Geometrical interpretation of the determinant

Th Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$ then A is invertible and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. If $a d-b c=0$ then A is not invertible.

Def The determinant of the 2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the number $\operatorname{det}(A)=a d-b c$.
We have seen from the proof of the above theorem or directly that the determinant is 0 is equivalent to that the columns or rows are parallel. Now we will give a geometric meaning to the magnitude of the determinant.
Let $\mathbf{v}=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}b \\ d\end{array}\right]$ be the column vectors of A, and let $\mathbf{v}_{\text {rot }}=\left[\begin{array}{c}-c \\ a\end{array}\right]$ be the rotation of the vector \mathbf{v} by $\pi / 2$ counterclockwise. We see that by the definition of the dot product

$$
\operatorname{det}(A)=a d-b c=\mathbf{v}_{\mathrm{rot}} \cdot \mathbf{w}=\left\|\mathbf{v}_{\mathrm{rot}}\right\|\|\mathbf{w}\| \cos \phi
$$

where ϕ is the angle between $\mathbf{v}_{\text {rot }}$ and \mathbf{w}. If θ is the angle between \mathbf{v} and \mathbf{w} then $\theta=\pi / 2-\phi$ and $\cos (\pi / 2-\theta)=\sin \theta$, and $\left\|\mathbf{v}_{\text {rot }}\right\|=\|\mathbf{v}\|$, so

$$
\operatorname{det}(A)=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta
$$

We conclude that

$$
|\operatorname{det}(A)|=\text { Area of parallelogram with sides } \mathbf{v} \text { and } \mathbf{w} .
$$

Question What is the area of the image of the unit square by the map with matrix A above?
Question What is the inverse of a scaling by a factor 3 and what is its matrix?

The transpose of an orthogonal matrix

The transpose A^{T} is the matrix with rows and columns interchanged, $\left(A^{T}\right)_{i j}=(A)_{j i}$
Ex If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 0 & -1 \\ 4 & 5 & 2\end{array}\right]$ then $A^{T}=\left[\begin{array}{ccc}1 & -2 & 4 \\ 2 & 0 & 5 \\ 3 & -1 & 2\end{array}\right]$.
Def An $n \times n$ matrix

$$
Q=\left[\begin{array}{ccc}
\mid & \mid & \\
\mathbf{q}_{1} & & \mid \\
\mathbf{q}_{2} & \cdots & \mathbf{q}_{n} \\
\mid & \mid & \\
\hline
\end{array}\right]
$$

is called orthogonal if the column vectors are orthonormal, i.e. for all i, j

$$
\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}, \quad \text { where } \quad \delta_{i j}=\left\{\begin{array}{ll}
1, & \text { if } i=j, \\
0, & \text { if } i \neq j
\end{array} .\right.
$$

An equivalent way to formulate this is that $Q^{T} Q=I$. This is because the columns of Q become the rows of Q^{T} and the matrix product is formed by taking the dot product of the rows of Q^{T} by the columns of Q, by the row column rule.

Question What is the inverse of a rotation counterclockwise $\pi / 2$ and what is its matrix?

Summary and Conceptual Questions

Def A transformation $T: X \rightarrow Y$ is called invertible if the equation

$$
T(\mathbf{x})=\mathbf{y}, \quad \text { has a unique solution } \mathbf{x} \in X \text { for each } \mathbf{y} \in Y .
$$

An inverse T^{-1} to T is a map such that

$$
\begin{equation*}
T^{-1}(T(\mathbf{x}))=\mathbf{x}, \quad \text { and } \quad T\left(T^{-1}(\mathbf{y})\right)=\mathbf{y}, \quad \text { for all } \mathbf{x} \in X, \mathbf{y} \in Y \tag{7.2}
\end{equation*}
$$

T is invertible if and only if it has an inverse T^{-1}.
Def A matrix A is called invertible if the linear transformation $T(\mathbf{x})=A \mathbf{x}$ is invertible. The inverse is also linear and we denote its matrix by A^{-1} so $T^{-1}(\mathbf{y})=A^{-1} \mathbf{y}$.

Th An $n \times n$ matrix A is invertible if and only if there is an $n \times n$ matrix A^{-1} such that

$$
\begin{equation*}
A^{-1} A=A A^{-1}=I, \quad \text { where } I \text { is the identity matrix. } \tag{7.3}
\end{equation*}
$$

In fact (7.2) is equivalent to $A^{-1} A \mathbf{x}=\mathbf{x}$ and $A A^{-1} \mathbf{y}=\mathbf{y}$ for all \mathbf{x} and \mathbf{y} which is equivalent to (7.3). We could alternatively have taken the existence of a matrix A^{-1} satisfying (7.3) as the definition of invertibility, instead of the map $T(\mathbf{x})=A \mathbf{x}$ having an inverse satisfying (7.2).

Th Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$ then A is invertible and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
To find the inverse of A we perform row operations to solve the system $A \mathbf{x}=\mathbf{y}$ for $\mathbf{x}=B \mathbf{y}$. Then $A^{-1}=B$.
Ex Find the inverse of $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. $. ~ . ~$

$$
\left\{\begin{array} { r l l l }
{ x _ { 1 } } & { = y _ { 1 } } & { } \\
{ - 3 x _ { 1 } + x _ { 3 } } & { = } & { y _ { 2 } } \\
{ x _ { 2 } } & { = } & { y _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array} { r l r l }
{ x _ { 1 } } & { = y _ { 1 } } \\
{ x _ { 3 } } & { = 3 y _ { 1 } + y _ { 2 } } \\
{ x _ { 2 } } & { = } & { y _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{rll}
x_{1} & & =y_{1} \\
& x_{2} & = \\
& x_{3} & =3 y_{1}+y_{2}
\end{array} y_{3}\right.\right.\right.
$$

adding three times the first equation to the second and then switching the second and third. The system on the right is $\mathbf{x}=A^{-1} \mathbf{y}$ so we must have that
$A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 1 & 0\end{array}\right]$. Its easy to check that $A A^{-1}=I$.
The calculations above can be performed without writing out the variables as row operations directly to the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$;

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim(2)+3(1)\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim(3)\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right]
$$

We have found an algorithm for determining if A is invertible and finding the inverse:
Calculate the reduced row echelon form of the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
If it is of the form $\left[\begin{array}{ll}I & B\end{array}\right]$ then A is invertible and $A^{-1}=B$. Otherwise A is not invertible.

