7. Lecture 7: 2.4 The inverse of a matrix

Def A transformation $T: X \to Y$ is called **invertible** if the equation $T(\mathbf{x}) = \mathbf{y}$ has a unique solution $\mathbf{x} \in X$ for each $\mathbf{y} \in Y$. An **inverse** S to T is a map such that $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{y})) = \mathbf{y}$ for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y$. T is invertible if and only if it has an inverse denoted T^{-1} .

Def An $n \times n$ matrix is called **invertible** if the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is invertible. In Lecture 4 we saw that then the inverse is also a linear map. We denote the $n \times n$ matrix of the inverse linear map by A^{-1} . It hence satisfies $T^{-1}(\mathbf{y}) = A^{-1}\mathbf{y}$.

Th The $n \times n$ matrix A is invertible if and only if there is a matrix A^{-1} such that

$$A^{-1}A = AA^{-1} = I, (7.1)$$

where I is the identity matrix.

Pf If $T(\mathbf{x}) = A\mathbf{x}$ is invertible then the equation $T^{-1}(T(\mathbf{x})) = \mathbf{x}$ is equivalent to $A^{-1}A\mathbf{x} = \mathbf{x} = I\mathbf{x}$. However if this holds for all \mathbf{x} it follows that $A^{-1}A = I$. Similarly one proves that $AA^{-1} = I$. On the other hand suppose now that $T(\mathbf{x}) = A\mathbf{x}$ and there is a matrix A^{-1} satisfying (7.1). We claim that $\mathbf{x} = A^{-1}\mathbf{y}$ is a unique solution to $A\mathbf{x} = \mathbf{y}$ for every \mathbf{y} . In fact, it is a solution since $AA^{-1}\mathbf{y} = I\mathbf{y} = \mathbf{y}$, and the solution is unique since $A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$.

We could alternatively have taken the existence of a matrix A^{-1} satisfying (7.1) as the definition of invertibility and inverse of A.

Th Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$ then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. If ad - bc = 0 then A is not invertible.

Pf If $ad - bc \neq 0$ its easy to check that $AA^{-1} = A^{-1}A = I$:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right] = \left[\begin{array}{cc} ad - bc & 0 \\ 0 & ad - bc \end{array}\right].$$

If ad - bc = 0 then (a, b) and (c, d) are proportional and the system

$$ax_1 + bx_2 = y_1$$
$$cx_1 + dx_2 = y_2$$

does not have a unique solution so A is not invertible.

Ex Solve the system

$$-7x_1 + 3x_2 = 2$$
$$5x_1 - 2x_2 = 1$$

$$A = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, A^{-1} = \frac{1}{7 \cdot 2 - 3 \cdot 5} \begin{bmatrix} -2 & -3 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \text{ so } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 17 \end{bmatrix}$$

Th $(BA)^{-1} = A^{-1}B^{-1}$ and $(A^{-1})^{-1} = A$.

Pf This is clear from the composition of transformations, or from the associative property of matrix multiplication: $A^{-1}B^{-1}BA = A^{-1}IA = A^{-1}A = I$ and $BAA^{-1}B^{-1} = BIB^{-1} = I$.

How to calculate the inverse

If we can solve $A\mathbf{x} = \mathbf{y}$ for any \mathbf{y} we will get the inverse $\mathbf{x} = A^{-1}\mathbf{y}$.

Ex Find the inverse of $A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

Sol We perform row operations to solve the system $A\mathbf{x} = \mathbf{y}$:

$$\begin{cases} x_1 = y_1 \\ -3x_1 + x_3 = y_2 \Leftrightarrow \\ x_2 = y_3 \end{cases} \Leftrightarrow \begin{cases} x_1 = y_1 \\ x_3 = 3y_1 + y_2 \Leftrightarrow \\ x_2 = y_3 \end{cases} \Leftrightarrow \begin{cases} x_1 = y_1 \\ x_2 = y_3 \\ x_3 = 3y_1 + y_2 \end{cases}$$

adding three times the first equation to the second and then switching the second and the third equations. The system on the right is $\mathbf{x} = A^{-1}\mathbf{y}$ so we must have that $A^{-1} =$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$
. Its easy to check that $AA^{-1} = I$.

The calculations above can be performed without writing out the variables as row operations directly to the augmented matrix |AI|;

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim (2) + 3(1) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim (3) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 & 1 & 0 \end{bmatrix}$$

We have found an algorithm for determining if A is invertible and finding the inverse: Calculate the reduced row echelon form of the augmented matrix |AI|. If it is of the form $\begin{bmatrix} I & B \end{bmatrix}$ then A is invertible and $A^{-1} = B$. Otherwise A is not invertible.

One can also prove that this works multiplying by **elementary** matrices which correspond

to elementary row operations. Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Multiplying by
$$E_1$$
 adds 3 times row one to row two:
$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Multiplying by
$$E_2$$
 switches row two and row three:
$$E_2(E_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Hence

$$E_2E_1A = I$$

and multiplying both sides by A^{-1} to the right gives since $AA^{-1} = I$ and $IA^{-1} = A^{-1}$:

$$E_2 E_1 I = A^{-1}$$

Hence a sequence of elementary row operations that reduce A to I reduce I to A^{-1} . This argument assumed that A was invertible, but it also follows since each elementary matrix is invertible since the row operations are reversible and hence multiplying by the inverse of the elementary matrices gives $A = E_1^{-1} E_2^{-1}$ so A is invertible since it is a product of invertible.

Geometrical interpretation of the determinant

Th Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$ then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. If $ad - bc = \overline{0}$ then \overline{A} is not invertible.

Def The **determinant** of the 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the number $\det(A) = ad - bc$.

We have seen from the proof of the above theorem or directly that the determinant is 0 is equivalent to that the columns or rows are parallel. Now we will give a geometric meaning to the magnitude of the determinant.

Let $\mathbf{v} = \begin{bmatrix} a \\ c \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} b \\ d \end{bmatrix}$ be the column vectors of A, and let $\mathbf{v}_{\text{rot}} = \begin{bmatrix} -c \\ a \end{bmatrix}$ be the rotation of the vector \mathbf{v} by $\pi/2$ counterclockwise. We see that by the definition of the dot product

$$\det(A) = ad - bc = \mathbf{v}_{rot} \cdot \mathbf{w} = \|\mathbf{v}_{rot}\| \|\mathbf{w}\| \cos \phi,$$

where ϕ is the angle between $\mathbf{v}_{\rm rot}$ and \mathbf{w} . If θ is the angle between \mathbf{v} and \mathbf{w} then $\theta = \pi/2 - \phi$ and $\cos(\pi/2 - \theta) = \sin \theta$, and $\|\mathbf{v}_{rot}\| = \|\mathbf{v}\|$, so

$$\det\left(A\right) = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta,$$

We conclude that

 $|\det(A)| = \text{Area of parallelogram with sides } \mathbf{v} \text{ and } \mathbf{w}.$

Question What is the area of the image of the unit square by the map with matrix A above?

Question What is the inverse of a scaling by a factor 3 and what is its matrix?

The transpose of an orthogonal matrix

The transpose
$$A^{T}$$
 is the matrix with rows and columns interchanged, $(A^{T})_{ij} = (A)_{ji}$
Ex If $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & -1 \\ 4 & 5 & 2 \end{bmatrix}$ then $A^{T} = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 5 \\ 3 & -1 & 2 \end{bmatrix}$.

Def An $n \times n$ matrix

$$Q = egin{bmatrix} | & | & | \ \mathbf{q}_1 \ \mathbf{q}_2 \cdots \mathbf{q}_n \ | & | & | \end{bmatrix}$$

is called orthogonal if the column vectors are orthonormal, i.e. for all i, j

$$\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}, \quad \text{where} \quad \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases}$$

An equivalent way to formulate this is that $Q^TQ = I$. This is because the columns of Q become the rows of Q^T and the matrix product is formed by taking the dot product of the rows of Q^T by the columns of Q, by the row column rule.

Question What is the inverse of a rotation counterclockwise $\pi/2$ and what is its matrix?

SUMMARY AND CONCEPTUAL QUESTIONS

Def A transformation $T: X \to Y$ is called **invertible** if the equation

$$T(\mathbf{x}) = \mathbf{y}$$
, has a unique solution $\mathbf{x} \in X$ for each $\mathbf{y} \in Y$.

An **inverse** T^{-1} to T is a map such that

$$T^{-1}(T(\mathbf{x})) = \mathbf{x}$$
, and $T(T^{-1}(\mathbf{y})) = \mathbf{y}$, for all $\mathbf{x} \in X$, $\mathbf{y} \in Y$. (7.2)

T is invertible if and only if it has an inverse T^{-1} .

Def A matrix A is called **invertible** if the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is invertible. The inverse is also linear and we denote its matrix by A^{-1} so $T^{-1}(\mathbf{v}) = A^{-1}\mathbf{v}$.

Th An $n \times n$ matrix A is invertible if and only if there is an $n \times n$ matrix A^{-1} such that

$$A^{-1}A = AA^{-1} = I$$
, where *I* is the identity matrix. (7.3)

In fact (7.2) is equivalent to $A^{-1}A\mathbf{x} = \mathbf{x}$ and $AA^{-1}\mathbf{y} = \mathbf{y}$ for all \mathbf{x} and \mathbf{y} which is equivalent to (7.3). We could alternatively have taken the existence of a matrix A^{-1} satisfying (7.3) as the definition of invertibility, instead of the map $T(\mathbf{x}) = A\mathbf{x}$ having an inverse satisfying (7.2).

Th Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$ then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

To find the inverse of A we perform row operations to solve the system $A\mathbf{x} = \mathbf{y}$ for $\mathbf{x} = B\mathbf{y}$. Then $A^{-1} = B$.

Ex Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

Sol
$$\begin{cases} x_1 &= y_1 \\ -3x_1 + x_3 = y_2 \\ x_2 &= y_3 \end{cases} \Leftrightarrow \begin{cases} x_1 &= y_1 \\ x_3 = 3y_1 + y_2 \\ x_2 &= y_3 \end{cases} \Leftrightarrow \begin{cases} x_1 &= y_1 \\ x_2 &= y_2 \\ x_3 = 3y_1 + y_2 \end{cases}$$

adding three times the first equation to the second and then switching the second and third. The system on the right is $\mathbf{x} = A^{-1}\mathbf{y}$ so we must have that

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$
. Its easy to check that $AA^{-1} = I$.

The calculations above can be performed without writing out the variables as row operations directly to the augmented matrix |A|I|;

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim (2) + 3(1) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim (3) \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 & 1 & 0 \end{bmatrix}$$

We have found an algorithm for determining if A is invertible and finding the inverse: Calculate the reduced row echelon form of the augmented matrix A I.

If it is of the form $[I \ B]$ then A is invertible and $A^{-1} = B$. Otherwise A is not invertible.