8. Lecture 8: 3.1 Image and Kernel of a Linear Transformation

If $T: X \to Y$ is a transformation then the set X is called the **domain** of T. The set Im(T) of all images $T(\mathbf{x})$ when \mathbf{x} varies over all points in the domain is called the **image** of T, or sometimes the **range**. Note that the image need not be all of the **target space** Y.

T is said to be **onto** if each $\mathbf{y} \in Y$ is the image $T(\mathbf{x})$ of at least one $\mathbf{x} \in X$.

T is said to be **one-to-one** if each $\mathbf{y} \in Y$ is the image of at most one $\mathbf{x} \in X$.

T is called **invertible** if its one-to-one and onto.

Ex 7 Define $T: \mathbf{R}^2 \to \mathbf{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$. Is T onto? What is the image?

Sol The image of T is all combinations of the column vectors of A

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0\\ 2 & 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} x_1 + \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} x_2$$

for any x_1 and x_2 . The image is the plane 'spanned' by the two column vectors.

Given vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ and scalars $\lambda_1, \ldots, \lambda_k$, the vector

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

is called a **linear combination** of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$, with weights $\lambda_1, \ldots, \lambda_k$.

The set of all linear combinations of a $\mathbf{v}_1, ..., \mathbf{v}_n$ is called the **span** of $\mathbf{v}_1, ..., \mathbf{v}_n$ and is denoted by Span $(\mathbf{v}_1, ..., \mathbf{v}_n)$. The set $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ **span** (is a **spanning set** for) V if every vector in V can be written as a linear combination of $\mathbf{v}_1, ..., \mathbf{v}_n$.

The image of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is the span of the column vectors of A. Pf $\begin{bmatrix} | & | \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} \mathbf{v}_1 \cdots \mathbf{v}_n \\ \mathbf{v}_1 \cdots \mathbf{v}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n$$

The image of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is also called the column space of A, Col(A).

A subspace W of \mathbb{R}^n is a subset which is closed under addition and scalar multiplication: (a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{v} \in W$ then $\mathbf{u} + \mathbf{v} \in W$, (c) $\mathbf{w} \in W$ and k is a scalar then $k\mathbf{w} \in W$.

Ex A plane $ax_1 + bx_2 + cx_3 = 0$ going through the origin in space is a subspace of \mathbb{R}^3 .

The image of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$, from $\mathbf{R}^n \to \mathbf{R}^m$ is a subspace of \mathbf{R}^m . **Pf** For a proof see the proof of Theorem 3.1.4 in the textbook. Alternatively it follows from the previous theorem and the following theorem:

Alternatively it follows from the previous theorem and the following theorem

Th If $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbf{R}^m$ then $\operatorname{Span}(\mathbf{v}_1, ..., \mathbf{v}_n)$ is a subspace of \mathbf{R}^m .

Pf (b) follows from that sums of linear combinations are linear combination. In fact let $W = \text{Span}(\mathbf{v}_1, ..., \mathbf{v}_n)$. Then if $\mathbf{u} = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n \in W$ and $\mathbf{w} = d_1\mathbf{v}_1 + \cdots + d_n\mathbf{v}_n \in W$ it follows that $\mathbf{u} + \mathbf{w} = (c_1 + d_1)\mathbf{v}_1 + \cdots + (c_n + d_n)\mathbf{v}_n \in W$ since it is also a linear combination.

The kernel

The **kernel**, Ker(T), of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of all \mathbf{x} in the domain such that $T(\mathbf{x}) = 0$. It is a proper subset of the domain \mathbb{R}^n unless T is the zero map.

Ex Let $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Is *T* one-to-one? What is the kernel? **Sol** $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions since there are more variables than equations. Hence there are infinitely many points such that $T(\mathbf{x}) = 0$ so *T* is not one-to-one. Explicitly

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \quad \Leftrightarrow \quad \begin{array}{c} x_1 = 2x_3 \\ x_2 = -x_3 \\ x_3 = \text{free} \end{array} \begin{bmatrix} 2 \end{bmatrix}$$

The kernel is hence the subspace spanned by the line $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} t$, for any parameter t.

The kernel of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is also called the null space of A, Nul(A)

The kernel of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$, from $\mathbf{R}^n \to \mathbf{R}^m$ is a subspace of \mathbf{R}^n . Pf We must verify the three properties (a), (b), (c) in the definition of subspace. (a) $\mathbf{0} \in \text{Nul } A$ since $A\mathbf{0} = \mathbf{0}$.

(b) If $\mathbf{u}, \mathbf{v} \in \text{Nul } A$, show that $\mathbf{u} + \mathbf{v} \in \text{Nul } A$. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. (c) If $\mathbf{u} \in \text{Nul } A$, show that $\lambda \mathbf{u} \in \text{Nul } A$. $A(\lambda \mathbf{u}) = \lambda A\mathbf{u} = \lambda \mathbf{0} = \mathbf{0}$.

Ex 1 Find an explicit description of Nul A where $A = \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix}$. Sol Row reduction to solve $A\mathbf{x} = 0$; $\begin{bmatrix} 3 & 6 & 6 & 3 & 9 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0 \end{bmatrix} \sim \begin{array}{c} (1)/3 \begin{bmatrix} 1 & 2 & 2 & 1 & 3 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0 \end{bmatrix} \sim (2) - 6(1) \begin{bmatrix} 1 & 2 & 2 & 1 & 3 & 0 \\ 0 & 0 & 1 - 6 & -15 & 0 \end{bmatrix} \sim \begin{array}{c} (1) - 2(2) \begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 - 6 & -15 & 0 \end{bmatrix}$

Hence $A\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{cases} x_1 + 2x_2 + 13x_4 + 33x_5 = 0 \\ x_3 - 6x_4 - 15x_5 = 0 \end{cases}$. x_2, x_4, x_5 are free so the sol. is

$\begin{bmatrix} x_1 \end{bmatrix}$]	$\begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \end{bmatrix}$		-2		-13		-33	
x_2		x_2		1		0		0	
x_3	=	$6x_4 + 15x_5$	$=x_2$	0	$+x_{4}$	6	$+x_{5}$	15	
x_4		x_4		0		1		0	
x_5		x_5		0		0		1	

Hence Nul $A = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, is the span of the three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ above.

We always have that $\mathbf{0} \in \text{Ker}(A)$. When is $\text{Ker}(A) = \{0\}$?

Th (a) If A is $m \times n$ then Ker(A) = {0} if and only if rank(A) = n.

- (b) If A is $m \times n$ and $\text{Ker}(A) = \{0\}$ then $m \leq n$.
- (c) If A is $n \times n$ then $\text{Ker}(A) = \{0\}$ if and only if A is invertible.

Th For an $n \times n$ matrix A the following statements are equivalent:

(i) A is invertible

- (ii) $A\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} for all \mathbf{b} .
- (iii) $\operatorname{Rref}(A) = I$.

(iv) $\operatorname{rank}(A) = n$.

- (v) $\operatorname{Im}(A) = \mathbf{R}^n$.
- (vi) $\operatorname{Ker}(A) = \mathbf{0}$

SUMMARY AND QUESTIONS

If $T: X \to Y$ is a transformation then the set X is called the **domain** of T. The set Im(T) of all images $T(\mathbf{x})$ when \mathbf{x} varies over all points in the domain is called the **image** of T, or sometimes the **range**. Note that the image need not be all of the **target space** Y.

T is said to be **onto** if each $\mathbf{y} \in Y$ is the image $T(\mathbf{x})$ of at least one $\mathbf{x} \in X$.

T is said to be **one-to-one** if each $\mathbf{y} \in Y$ is the image of at most one $\mathbf{x} \in X$.

T is called **invertible** if its one-to-one and onto.

Given vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ and scalars $\lambda_1, \ldots, \lambda_k$, the vector

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

is called a **linear combination** of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ (with weights $\lambda_1, \ldots, \lambda_k$).

The set of all linear combinations of a $\mathbf{v}_1, ..., \mathbf{v}_n$ is called the **span** of $\mathbf{v}_1, ..., \mathbf{v}_n$ and is denoted by Span $(\mathbf{v}_1, ..., \mathbf{v}_n)$. The set $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ is said to **span** W if $W = \text{Span}(\mathbf{v}_1, ..., \mathbf{v}_n)$.

The image of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is the span of the column vectors of A. Pf $\begin{bmatrix} | & | \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_n \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n$$

The **kernel**, Ker(T), of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of all \mathbf{x} in the domain such that $T(\mathbf{x}) = 0$. It is a proper subset of the domain \mathbb{R}^n unless T is the zero map.

A subspace W of \mathbb{R}^n is a subset which is closed under addition and scalar multiplication: (a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{v} \in W$ then $\mathbf{u} + \mathbf{v} \in W$, (c) $\mathbf{w} \in W$ and k is a scalar then $k\mathbf{w} \in W$.

Ex A plane $ax_1 + bx_2 + cx_3 = 0$ going through the origin in space is a subspace of \mathbb{R}^3 .

Th If $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbf{R}^m$ then $\text{Span}(\mathbf{v}_1, ..., \mathbf{v}_n)$ is a subspace of \mathbf{R}^m .

The image of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$, from $\mathbf{R}^n \to \mathbf{R}^m$ is a subspace of \mathbf{R}^m .

The kernel of a linear transformation $T(\mathbf{x}) = A\mathbf{x}$, from $\mathbf{R}^n \to \mathbf{R}^m$ is a subspace of \mathbf{R}^n .

Question Which of the following are subspaces: (a) the plane $x_1 + 2x_2 - 4x_3 = 1$, (b) The span of the vectors (1, 2, 4) and (2, 4, 8)? (c) The Kernel of the matrix corresponding to rotation by 90 degrees counterclockwise? (d) The circle $x_1^2 + x_2^2 = 1$. (e) The ball $x^2 + y^2 + z^2 \leq 1$.

Question Which of the following transformations have a nontrivial kernel (i.e. containing more than just **0**)? (a) Rotation by $\pi/2$ counterclockwise, (b) Projection of the plane onto the x axis. (c) Reflection in the x axis.