8. Lecture 8: 3.1 Image and Kernel of a Linear Transformation

If $T: X \rightarrow Y$ is a transformation then the set X is called the domain of T. The set $\operatorname{Im}(T)$ of all images $T(\mathbf{x})$ when \mathbf{x} varies over all points in the domain is called the image of T, or sometimes the range. Note that the image need not be all of the target space Y.
T is said to be onto if each $\mathbf{y} \in Y$ is the image $T(\mathbf{x})$ of at least one $\mathbf{x} \in X$.
T is said to be one-to-one if each $\mathbf{y} \in Y$ is the image of at most one $\mathbf{x} \in X$.
T is called invertible if its one-to-one and onto.
Ex 7 Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Is T onto? What is the image?
Sol The image of T is all combinations of the column vectors of A

$$
T(\mathbf{x})=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] x_{2}
$$

for any x_{1} and x_{2}. The image is the plane 'spanned' by the two column vectors.
Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and scalars $\lambda_{1}, \ldots, \lambda_{k}$, the vector

$$
\mathbf{w}=\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, with weights $\lambda_{1}, \ldots \lambda_{k}$.
The set of all linear combinations of a $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and is denoted by $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ span (is a spanning set for) V if every vector in V can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

Th The image of a linear transformation $T(\mathbf{x})=A \mathbf{x}$ is the span of the column vectors of A. Pf

$$
T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & & \left.\right|^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}
$$

The image of a linear transformation $T(\mathbf{x})=A \mathbf{x}$ is also called the column space of $A, \operatorname{Col}(A)$.
A subspace W of \mathbf{R}^{n} is a subset which is closed under addition and scalar multiplication:
(a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{v} \in W$ then $\mathbf{u}+\mathbf{v} \in W$, (c) $\mathbf{w} \in W$ and k is a scalar then $k \mathbf{w} \in W$.

Ex A plane $a x_{1}+b x_{2}+c x_{3}=0$ going through the origin in space is a subspace of \mathbf{R}^{3}.
Th The image of a linear transformation $T(\mathbf{x})=A \mathbf{x}$, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a subspace of \mathbf{R}^{m}. Pf For a proof see the proof of Theorem 3.1.4 in the textbook.
Alternatively it follows from the previous theorem and the following theorem:
Th If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a subspace of \mathbf{R}^{m}.
Pf (b) follows from that sums of linear combinations are linear combination. In fact let $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. Then if $\mathbf{u}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \in W$ and $\mathbf{w}=d_{1} \mathbf{v}_{1}+\cdots+d_{n} \mathbf{v}_{n} \in W$ it follows that $\mathbf{u}+\mathbf{w}=\left(c_{1}+d_{1}\right) \mathbf{v}_{1}+\cdots+\left(c_{n}+d_{n}\right) \mathbf{v}_{n} \in W$ since it is also a linear combination.

The kernel

The kernel, $\operatorname{Ker}(T)$, of a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is the set of all \mathbf{x} in the domain such that $T(\mathbf{x})=0$. It is a proper subset of the domain \mathbf{R}^{n} unless T is the zero map.

Ex Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$. Is T one-to-one? What is the kernel? Sol $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions since there are more variables than equations. Hence there are infinitely many points such that $T(\mathbf{x})=0$ so T is not one-to-one. Explicitly

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right], \quad \Leftrightarrow \quad \begin{aligned}
& x_{1}=2 x_{3} \\
& x_{2}=-x_{3} \\
& x_{3}=\text { free }
\end{aligned}
$$

The kernel is hence the subspace spanned by the line $\mathbf{x}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right] t$, for any parameter t.
The kernel of a linear transformation $T(\mathbf{x})=A \mathbf{x}$ is also called the null space of $A, \operatorname{Nul}(A)$
Th The kernel of a linear transformation $T(\mathbf{x})=A \mathbf{x}$, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a subspace of \mathbf{R}^{n}.
Pf We must verify the three properties (a), (b), (c) in the definition of subspace.
(a) $\mathbf{0} \in \operatorname{Nul} A$ since $A \mathbf{0}=\mathbf{0}$.
(b) If $\mathbf{u}, \mathbf{v} \in \operatorname{Nul} A$, show that $\mathbf{u}+\mathbf{v} \in \operatorname{Nul} A . A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}$.
(c) If $\mathbf{u} \in \operatorname{Nul} A$, show that $\lambda \mathbf{u} \in \operatorname{Nul} A . A(\lambda \mathbf{u})=\lambda A \mathbf{u}=\lambda \mathbf{0}=\mathbf{0}$.

Ex 1 Find an explicit description of Nul A where $A=\left[\begin{array}{ccccc}3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3\end{array}\right]$.
Sol Row reduction to solve $A \mathbf{x}=0 ;\left[\begin{array}{cccccc}3 & 6 & 6 & 3 & 9 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0\end{array}\right] \sim(1) / 3\left[\begin{array}{cccccc}1 & 2 & 2 & 1 & 3 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0\end{array}\right] \sim$
$(2)-6(1)\left[\begin{array}{cccccc}1 & 2 & 2 & 1 & 3 & 0 \\ 0 & 0 & 1-6 & -15 & 0\end{array}\right] \sim^{(1)-2(2)}\left[\begin{array}{cccccc}1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1-6 & -15 & 0\end{array}\right]$
Hence $A \mathbf{x}=\mathbf{0} \Leftrightarrow\left\{\begin{array}{r}x_{1}+2 x_{2}+13 x_{4}+33 x_{5}=0 \\ x_{3}-6 x_{4}-15 x_{5}=0\end{array} . x_{2}, x_{4}, x_{5}\right.$ are free so the sol. is

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}-13 x_{4}-33 x_{5} \\
x_{2} \\
6 x_{4}+15 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
1
\end{array}\right]
$$

Hence $\operatorname{Nul} A=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, is the span of the three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ above.

We always have that $\mathbf{0} \in \operatorname{Ker}(A)$. When is $\operatorname{Ker}(A)=\{0\}$?
Th (a) If A is $m \times n$ then $\operatorname{Ker}(A)=\{0\}$ if and only if $\operatorname{rank}(A)=n$.
(b) If A is $m \times n$ and $\operatorname{Ker}(A)=\{0\}$ then $m \leq n$.
(c) If A is $n \times n$ then $\operatorname{Ker}(A)=\{0\}$ if and only if A is invertible.

Th For an $n \times n$ matrix A the following statements are equivalent:
(i) A is invertible
(ii) $A \mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x} for all \mathbf{b}.
(iii) $\operatorname{Rref}(A)=I$.
(iv) $\operatorname{rank}(A)=n$.
(v) $\operatorname{Im}(A)=\mathbf{R}^{n}$.
(vi) $\operatorname{Ker}(A)=\mathbf{0}$

Summary and Questions

If $T: X \rightarrow Y$ is a transformation then the set X is called the domain of T. The set $\operatorname{Im}(T)$ of all images $T(\mathbf{x})$ when \mathbf{x} varies over all points in the domain is called the image of T, or sometimes the range. Note that the image need not be all of the target space Y.
T is said to be onto if each $\mathbf{y} \in Y$ is the image $T(\mathbf{x})$ of at least one $\mathbf{x} \in X$. T is said to be one-to-one if each $\mathbf{y} \in Y$ is the image of at most one $\mathbf{x} \in X$. T is called invertible if its one-to-one and onto.

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and scalars $\lambda_{1}, \ldots, \lambda_{k}$, the vector

$$
\mathbf{w}=\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ (with weights $\lambda_{1}, \ldots \lambda_{k}$).
The set of all linear combinations of a $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and is denoted by $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is said to $\operatorname{span} W$ if $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$.

Th The image of a linear transformation $T(\mathbf{x})=A \mathbf{x}$ is the span of the column vectors of A. Pf

$$
T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}
$$

The kernel, $\operatorname{Ker}(T)$, of a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is the set of all \mathbf{x} in the domain such that $T(\mathbf{x})=0$. It is a proper subset of the domain \mathbf{R}^{n} unless T is the zero map.

A subspace W of \mathbf{R}^{n} is a subset which is closed under addition and scalar multiplication: (a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{v} \in W$ then $\mathbf{u}+\mathbf{v} \in W$, (c) $\mathbf{w} \in W$ and k is a scalar then $k \mathbf{w} \in W$.

Ex A plane $a x_{1}+b x_{2}+c x_{3}=0$ going through the origin in space is a subspace of \mathbf{R}^{3}.
Th If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a subspace of \mathbf{R}^{m}.
Th The image of a linear transformation $T(\mathbf{x})=A \mathbf{x}$, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a subspace of \mathbf{R}^{m}.
Th The kernel of a linear transformation $T(\mathbf{x})=A \mathbf{x}$, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a subspace of \mathbf{R}^{n}.
Question Which of the following are subspaces: (a) the plane $x_{1}+2 x_{2}-4 x_{3}=1$, (b) The span of the vectors $(1,2,4)$ and $(2,4,8)$? (c) The Kernel of the matrix corresponding to rotation by 90 degrees counterclockwise? (d) The circle $x_{1}^{2}+x_{2}^{2}=1$. (e) The ball $x^{2}+y^{2}+z^{2} \leq 1$.

Question Which of the following transformations have a nontrivial kernel (i.e. containing more than just 0)? (a) Rotation by $\pi / 2$ counterclockwise, (b) Projection of the plane onto the x axis. (c) Reflection in the x axis.

