9. Lecture 9: 3.2 Linear Independence and Bases

Let us start by recalling some definitions and facts that we proved:
A subspace W of \mathbf{R}^{m} is a subset which is closed under addition and scalar multiplication: (a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{w} \in W$ then $\mathbf{u}+\mathbf{w} \in W$, (c) $\mathbf{w} \in W$ and $k \in \mathbf{R}$ then $k \mathbf{w} \in W$.

The examples of subspaces we know are either images or kernels of linear transformations: Th If $T(\mathbf{x})=A \mathbf{x}$ is a linear transformation, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, then
(a) The Image of T, also called the Column space of A, is a subspace of \mathbf{R}^{m}.
(b) The Kernel of T, also called the Null space of A is a subspace of \mathbf{R}^{n}.

The span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$, denoted $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, is the set of a all linear combinations

$$
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}, \quad \text { with } \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}
$$

Th If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$ then $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a subspace of \mathbf{R}^{m}.
Pf If $\mathbf{u}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \in W$ and $\mathbf{w}=d_{1} \mathbf{v}_{1}+\cdots+d_{n} \mathbf{v}_{n} \in W$ it follows that $\mathbf{u}+\mathbf{w}=\left(c_{1}+d_{1}\right) \mathbf{v}_{1}+\cdots+\left(c_{n}+d_{n}\right) \mathbf{v}_{n} \in W$ since it is also a linear combination.

As we shall see every subspace W of \mathbf{R}^{m} is the span $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of some vectors in \mathbf{R}^{m}.
Question Could it be that a subset of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$?
Ex. Give a minimal set of vectors spanning the column space of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3\end{array}\right]$
Sol. The 3 column vectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 9 \\ 3\end{array}\right]$ span the column space by definition. It is also clear from inspection that none of them can be written as a multiple of another alone. Hence only the possibility that one of them can be written as a linear combination of the other two remains:

$$
\begin{equation*}
\mathbf{v}_{1}=c_{12} \mathbf{v}_{2}+c_{13} \mathbf{v}_{3}, \quad \text { or } \quad \mathbf{v}_{2}=c_{21} \mathbf{v}_{1}+c_{23} \mathbf{v}_{3}, \quad \text { or } \quad \mathbf{v}_{3}=c_{31} \mathbf{v}_{1}+c_{32} \mathbf{v}_{2} . \tag{9.1}
\end{equation*}
$$

The statement, that one of these 3 equalities hold, is equivalent to

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}, \quad \text { for some } c_{1}, c_{2}, c_{3} \text { not all } 0 \tag{9.2}
\end{equation*}
$$

In fact if one of the equations in (9.1), say the first, holds then $\mathbf{v}_{1}-c_{12} \mathbf{v}_{2}-c_{13} \mathbf{v}_{3}=\mathbf{0}$ so (9.2) holds with $c_{1}=1, c_{2}=-c_{12}, c_{3}=-c_{13}$. On the other hand if (9.2) holds with one of c_{1}, c_{2}, c_{3} different from 0 , say $c_{1} \neq 0$, then dividing by c_{1} we get $\mathbf{v}_{1}=-\left(c_{2} \mathbf{v}_{2}+c_{2} \mathbf{v}_{3}\right) / c_{1}$ so (9.1) holds. However, (9.2) is equivalent to that the system $A \mathbf{c}=\mathbf{0}$ has a nontrivial solution $\mathbf{c} \neq 0$:

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 33 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since x_{3} is free there are nontrivial solutions $x_{1}=-33 x_{3}, x_{2}=18 x_{3}, x_{3}$ is free. If we e.g. let $x_{3}=1$ then $x_{1}=-33$ and $x_{2}=18$ so we have the linear dependence relation

$$
-33 \mathbf{v}_{1}+18 \mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}
$$

Hence $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{1}\right)$.

We say that a vector \mathbf{v}_{i}, in an ordered list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, is redundant if it is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}$, i.e. for some constants c_{1}, \ldots, c_{i-1} we have

$$
\begin{equation*}
\mathbf{v}_{i}=c_{1} \mathbf{v}_{1}+\cdots+c_{i-1} \mathbf{v}_{i-1} . \tag{9.3}
\end{equation*}
$$

We say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent if none of them is redundant.
If at least one is redundant they are said to be linearly dependent.
The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to satisfy a nontrivial linear relation if

$$
\begin{equation*}
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{p} \mathbf{v}_{p}=\mathbf{0}, \quad \text { for some } \lambda_{1}, \ldots, \lambda_{p}, \text { not all } 0 \tag{9.4}
\end{equation*}
$$

Th $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ are linearly dependent if and only if they satisfy a nontrivial linear relation. Pf It is easy to see that (9.4) is equivalent to (9.3) for some i. First if (9.4) hold take the largest k such that $\lambda_{k} \neq 0$. Then $\mathbf{v}_{k}=-\left(\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k-1} \mathbf{v}_{k-1}\right) / \lambda_{k}$ so (9.3) hold. On the other hand if (9.3) hold then $\mathbf{v}_{i}-c_{1} \mathbf{v}_{1}-\cdots-c_{i-1} \mathbf{v}_{i-1}=0$ so (9.4) hold.

Usually (9.4) is taken as definition of linear dependence and linear independence is that

$$
\begin{equation*}
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0} \tag{9.5}
\end{equation*}
$$

has only the trivial solution $x_{1}=\cdots=x_{p}=0$. (9.5) can be written in matrix form

$$
A \mathbf{x}=\left[\begin{array}{ccc}
\mid & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{p} \\
\mid & & \left.\right|^{2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right]=x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}
$$

and the linear independence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is that this equation has only the trivial solution $\mathbf{x} \neq \mathbf{0}$, whereas linear dependence is the statement that it has a nontrivial solution $\mathbf{x} \neq \mathbf{0}$.

Let V be a subspace of \mathbf{R}^{m}. We say that the vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ form a basis for V if they span V and are linearly independent.

Th $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ form a basis for V if (and only if) every vector $\mathbf{v} \in V$ can be expressed uniquely as a linear combination $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m}$ (i.e. for unique c_{1}, \ldots, c_{m}).
Pf Only the uniqueness remains to be shown. If we had two representations $\mathbf{v}=c_{1} \mathbf{v}_{1}+$ $\cdots+c_{m} \mathbf{v}_{m}=d_{1} \mathbf{v}_{1}+\cdots+d_{m} \mathbf{v}_{m}$, then their difference would satisfy $\left(c_{1}-d_{1}\right) \mathbf{v}_{1}+\cdots+$ $\left(c_{m}-d_{m}\right) \mathbf{v}_{m}=\mathbf{0}$. However, since the vectors are linearly independent this would imply that $c_{1}=d_{1}, \ldots c_{m}=d_{m}$ so it was unique after all.

Th Let W be a subspace of \mathbf{R}^{m}. Then W has a basis, i.e. $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$ of some linearly independent vectors.
Pf If $W \neq\{\mathbf{0}\}$ there is a $\mathbf{v}_{1} \in W \backslash\{0\}$. Let $W_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)$. If $W \backslash W_{1} \neq \emptyset$ then we can take $\mathbf{v}_{2} \in W \backslash W_{1}$ and define $W_{2}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, and so on if $W \backslash W_{k-1} \neq \emptyset$ we take $\mathbf{v}_{k} \in W \backslash W_{k-1}$ and form $W_{k}=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. By construction $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent. We claim that this process has to stop at some point with $k \leq m$. In fact suppose not and $k>m$. Then $\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}=\mathbf{0}$, would have a nontrivial solution since it has more unknowns than equations. This would contradict the linear independence proving that $k \leq m$.

The theorem shows that any proper subspace of \mathbf{R}^{3} is either spanned by one vector, and is a line through the origin, or spanned by two vectors, and is a plane through the origin.

Summary and Questions

A subspace W of \mathbf{R}^{m} is a subset which is closed under addition and scalar multiplication: (a) $\mathbf{0} \in W$, (b) $\mathbf{u} \in W$ and $\mathbf{w} \in W$ then $\mathbf{u}+\mathbf{w} \in W$, (c) $\mathbf{w} \in W$ and $k \in \mathbf{R}$ then $k \mathbf{w} \in W$.

The span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$, denoted $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, is the set of a all linear combinations

$$
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}, \quad \text { with } \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}
$$

Th If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{R}^{m}$ then $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a subspace of \mathbf{R}^{m}.
Th Let W be a subspace of \mathbf{R}^{m}. Then $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$ of some vectors.
Th If $T(\mathbf{x})=A \mathbf{x}$ is a linear transformation, from $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, then
(a) The Image of T, also called the Column space of A, is a subspace of \mathbf{R}^{m}.
(b) The Kernel of T, also called the Null space of A is a subspace of \mathbf{R}^{n}.

We say that a vector \mathbf{v}_{i}, in an ordered list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, is redundant if it is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}$, i.e. for some constants c_{1}, \ldots, c_{i-1} we have

$$
\mathbf{v}_{i}=c_{1} \mathbf{v}_{1}+\cdots+c_{i-1} \mathbf{v}_{i-1}
$$

We say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent if none of them is redundant.
If at least one is redundant they are said to be linearly dependent.
The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to satisfy a nontrivial linear relation if

$$
\begin{equation*}
\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{p} \mathbf{v}_{p}=\mathbf{0}, \quad \text { for some } \lambda_{1}, \ldots, \lambda_{p}, \text { not all } 0 \tag{9.6}
\end{equation*}
$$

$\mathbf{T h}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ are linearly dependent if and only if they satisfy a nontrivial linear relation.
Usually (9.6) is taken as definition of linear dependence and linear independence is that

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution $x_{1}=\cdots=x_{p}=0$. This can be written in matrix form

$$
A \mathbf{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{p} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right]=x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}
$$

and the linear independence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is that this equation has only the trivial solution $\mathbf{x} \neq \mathbf{0}$, whereas linear dependence is the statement that it has a nontrivial solution $\mathbf{x} \neq \mathbf{0}$.

Let V be a subspace of \mathbf{R}^{m}. We say that the vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ form a basis for V if they span V and are linearly independent.

Th $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ form a basis for V if (and only if) every vector $\mathbf{v} \in V$ can be expressed uniquely as a linear combination $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m}$ (i.e. for unique c_{1}, \ldots, c_{m}).

Th Let W be a subspace of \mathbf{R}^{m}. Then W has a basis, i.e. $W=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right)$ of some linearly independent vectors.

