
9. Lecture 9: 3.2 Linear Independence and Bases

Let us start by recalling some definitions and facts that we proved:

A subspace W of Rm is a subset which is closed under addition and scalar multiplication:
(a) 0 ∈ W, (b) u∈W and w∈W then u+w∈W , (c) w∈W and k ∈ R then kw∈W.

The examples of subspaces we know are either images or kernels of linear transformations:
Th If T (x) = Ax is a linear transformation, from Rn → Rm, then
(a) The Image of T , also called the Column space of A, is a subspace of Rm.
(b) The Kernel of T , also called the Null space of A is a subspace of Rn.

The span of v1, ...,vn∈ Rm, denoted Span(v1, ...,vn), is the set of a all linear combinations

λ1v1 + · · ·+ λkvk, with λ1, . . . , λn ∈ R.

Th If v1, ...,vn ∈ Rm then W = Span(v1, ...,vn) is a subspace of Rm.
Pf If u = c1v1 + · · ·+ cnvn ∈ W and w = d1v1 + · · ·+ dnvn ∈ W it follows that
u+w = (c1+d1)v1 + · · ·+ (cn+dn)vn ∈ W since it is also a linear combination.

As we shall see every subspace W of Rm is the span Span(v1, ...,vn) of some vectors in Rm.

Question Could it be that a subset of the vectors v1, ...,vn span Span(v1, ...,vn)?

Ex. Give a minimal set of vectors spanning the column space of the matrix A =

 1 2 −3
3 5 9
5 9 3


Sol. The 3 column vectors v1 =

 1
3
5

, v2 =

 2
5
9

 and v3 =

−3
9
3

 span the column space by

definition. It is also clear from inspection that none of them can be written as a multiple
of another alone. Hence only the possibility that one of them can be written as a linear
combination of the other two remains:

v1 =c12v2 + c13v3, or v2 =c21v1 + c23v3, or v3 =c31v1 + c32v2. (9.1)

The statement, that one of these 3 equalities hold, is equivalent to

c1v1 + c2v2 + c3v3 = 0, for some c1, c2, c3 not all 0. (9.2)

In fact if one of the equations in (9.1), say the first, holds then v1−c12v2− c13v3 = 0 so (9.2)
holds with c1 =1, c2 =−c12, c3 =−c13. On the other hand if (9.2) holds with one of c1, c2, c3
different from 0, say c1 6=0, then dividing by c1 we get v1 = −(c2v2 + c2v3)/c1 so (9.1) holds.
However, (9.2) is equivalent to that the system Ac=0 has a nontrivial solution c 6=0: 1 2 −3 0

3 5 9 0
5 9 3 0

 ∼
 1 2 −3 0

0 −1 18 0
0 −1 18 0

 ∼
 1 2 −3 0

0 −1 18 0
0 0 0 0

 ∼
 1 0 33 0

0 −1 18 0
0 0 0 0


Since x3 is free there are nontrivial solutions x1 =−33x3, x2 =18x3, x3 is free. If we e.g. let
x3 =1 then x1 =−33 and x2 =18 so we have the linear dependence relation

−33v1 + 18v2 + v3 = 0.

Hence Span(v1,v2,v3) = Span(v1,v2) = Span(v2,v3) = Span (v3,v1).
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We say that a vector vi, in an ordered list v1, . . . ,vn, is redundant if it is a linear combi-
nation of the preceding vectors v1, . . . ,vi−1, i.e. for some constants c1, . . . , ci−1 we have

vi = c1v1 + · · ·+ ci−1vi−1. (9.3)

We say that v1, . . . ,vn are linearly independent if none of them is redundant.
If at least one is redundant they are said to be linearly dependent.
The set {v1, . . . ,vp} is said to satisfy a nontrivial linear relation if

λ1v1 + · · ·+ λpvp = 0, for some λ1, . . . , λp, not all 0. (9.4)

Th {v1, . . . ,vp} are linearly dependent if and only if they satisfy a nontrivial linear relation.
Pf It is easy to see that (9.4) is equivalent to (9.3) for some i. First if (9.4) hold take the
largest k such that λk 6= 0. Then vk = −(λ1v1 + · · · + λk−1vk−1)/λk so (9.3) hold. On the
other hand if (9.3) hold then vi − c1v1 − · · · − ci−1vi−1 = 0 so (9.4) hold.

Usually (9.4) is taken as definition of linear dependence and linear independence is that

x1v1 + · · ·+ xpvp = 0 (9.5)

has only the trivial solution x1 = · · ·=xp =0. (9.5) can be written in matrix form

Ax =

[
| |
v1 · · ·vp
| |

][
x1...
xp

]
= x1v1 + · · ·+ xpvp,

and the linear independence of v1, . . . ,vp is that this equation has only the trivial solution
x 6= 0, whereas linear dependence is the statement that it has a nontrivial solution x 6= 0.

Let V be a subspace of Rm. We say that the vectors {v1, . . . ,vp} form a basis for V if they
span V and are linearly independent.

Th {v1, . . . ,vm} form a basis for V if (and only if) every vector v ∈ V can be expressed
uniquely as a linear combination v = c1v1 + · · ·+ cmvm (i.e. for unique c1, . . . , cm).
Pf Only the uniqueness remains to be shown. If we had two representations v = c1v1 +
· · · + cmvm = d1v1 + · · · + dmvm, then their difference would satisfy (c1 − d1)v1 + · · · +
(cm−dm)vm = 0. However, since the vectors are linearly independent this would imply that
c1 = d1,. . . cm = dm so it was unique after all.

Th Let W be a subspace of Rm. Then W has a basis, i.e. W = Span(v1, . . . ,vp) of some
linearly independent vectors.
Pf If W 6={0} there is a v1∈W \{0}. Let W1 = Span(v1). If W \W1 6= ∅ then we can take
v2 ∈ W\W1 and define W2 = Span(v1,v2), and so on if W\Wk−1 6= ∅ we take vk∈W\Wk−1

and form Wk = Span(v1, . . . ,vk). By construction v1, . . . ,vk are linearly independent. We
claim that this process has to stop at some point with k ≤ m. In fact suppose not and k > m.
Then λ1v1 + · · · + λkvk = 0, would have a nontrivial solution since it has more unknowns
than equations. This would contradict the linear independence proving that k ≤ m.

The theorem shows that any proper subspace of R3 is either spanned by one vector, and is
a line through the origin, or spanned by two vectors, and is a plane through the origin.
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Summary and Questions

A subspace W of Rm is a subset which is closed under addition and scalar multiplication:
(a) 0 ∈ W, (b) u∈W and w∈W then u+w∈W , (c) w∈W and k ∈ R then kw∈W.

The span of v1, ...,vn∈ Rm, denoted Span(v1, ...,vn), is the set of a all linear combinations

λ1v1 + · · ·+ λkvk, with λ1, . . . , λn ∈ R.

Th If v1, ...,vn ∈ Rm then W = Span(v1, ...,vn) is a subspace of Rm.
Th Let W be a subspace of Rm. Then W = Span(v1, . . . ,vp) of some vectors.

Th If T (x) = Ax is a linear transformation, from Rn → Rm, then
(a) The Image of T , also called the Column space of A, is a subspace of Rm.
(b) The Kernel of T , also called the Null space of A is a subspace of Rn.

We say that a vector vi, in an ordered list v1, . . . ,vn, is redundant if it is a linear combi-
nation of the preceding vectors v1, . . . ,vi−1, i.e. for some constants c1, . . . , ci−1 we have

vi = c1v1 + · · ·+ ci−1vi−1.

We say that v1, . . . ,vn are linearly independent if none of them is redundant.
If at least one is redundant they are said to be linearly dependent.
The set {v1, . . . ,vp} is said to satisfy a nontrivial linear relation if

λ1v1 + · · ·+ λpvp = 0, for some λ1, . . . , λp, not all 0. (9.6)

Th {v1, . . . ,vp} are linearly dependent if and only if they satisfy a nontrivial linear relation.

Usually (9.6) is taken as definition of linear dependence and linear independence is that

x1v1 + · · ·+ xpvp = 0

has only the trivial solution x1 = · · ·=xp =0. This can be written in matrix form

Ax =

[
| |
v1 · · ·vp
| |

][
x1...
xp

]
= x1v1 + · · ·+ xpvp,

and the linear independence of v1, . . . ,vp is that this equation has only the trivial solution
x 6= 0, whereas linear dependence is the statement that it has a nontrivial solution x 6= 0.

Let V be a subspace of Rm. We say that the vectors {v1, . . . ,vp} form a basis for V if they
span V and are linearly independent.

Th {v1, . . . ,vm} form a basis for V if (and only if) every vector v ∈ V can be expressed
uniquely as a linear combination v = c1v1 + · · ·+ cmvm (i.e. for unique c1, . . . , cm).

Th Let W be a subspace of Rm. Then W has a basis, i.e. W = Span(v1, . . . ,vp) of some
linearly independent vectors.
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