LINEAR ALGEBRA – FIRST MIDTERM EXAM – OCTOBER 17, 2001

Please attempt all the problems and show all your work. Don't hesitate to ask me for clarification on any questions you may have. You may **not** use any notes, books or calculators.

1. Solve the following system of linear equations:

$$x + y - z = 1$$

$$-5x + y + z = -7$$

$$x - 5y + 3z = 3$$

Is the solution unique?

2 . Find a basis for the kernel and a basis for the image of the following matrix:

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 1 \\ -1 & 1 & 0 & -2 & 2 \\ 1 & -1 & -2 & 0 & 3 \\ 2 & -2 & -1 & 3 & 4 \end{pmatrix}$$

(this page left blank)

- 3. Answer the following questions **true or false**:
- (i) The rank of the following matrix is three: $\begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$?

(ii) If $\vec{u}, \vec{v}, \vec{w}$ are vectors in \mathbb{R}^n , and \vec{u} is a linear combination of \vec{v} and \vec{w} , then \vec{w} is a linear combination of \vec{u} and \vec{v} .

(iii) If A is an invertible $n \times n$ matrix, and B is any $n \times m$ matrix, then $\ker(AB) = \ker(B)$.

(iv) If $T : \mathbb{R}^m \to \mathbb{R}^n$ is linear, and $\vec{b} \in \mathbb{R}^n$, then the set of solutions to the equation $T\vec{x} = \vec{b}$ is a linear subspace of \mathbb{R}^m .

4. Consider the vectors
$$\vec{u}_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by:
$$T\vec{x} = (\vec{x} \cdot \vec{u}_1) \vec{u}_2 + (\vec{x} \cdot \vec{u}_2) \vec{u}_1 .$$

Show that T is a linear transformation, and compute its matrix (with respect to the standard basis).

(this page left blank)

5. Let $\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$ be a basis for \mathbb{R}^2 , where $\vec{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Suppose that the matrix of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the standard basis \mathcal{E} of \mathbb{R}^2 is

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & 3\\ 1 & 0 \end{pmatrix}$$

Calculate $[T]_{\mathcal{B}}$, the expression of T with respect to the basis \mathcal{B} .

(this page left blank)