NAME:

SECTION \# OR TA'S NAME:

LINEAR ALGEBRA - FIRST MIDTERM EXAM - OCTOBER 17, 2001

Please attempt all the problems and show all your work. Don't hesitate to ask me for clarification on any questions you may have. You may not use any notes, books or calculators.

1. Solve the following system of linear equations:

$$
\begin{aligned}
x+y-z & =1 \\
-5 x+y+z & =-7 \\
x-5 y+3 z & =3
\end{aligned}
$$

Is the solution unique?
2. Find a basis for the kernel and a basis for the image of the following matrix:

$$
\left(\begin{array}{ccccc}
1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 0 & -2 & 2 \\
1 & -1 & -2 & 0 & 3 \\
2 & -2 & -1 & 3 & 4
\end{array}\right)
$$

(this page left blank)

3 . Answer the following questions true or false:
(i) The rank of the following matrix is three: $\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$?
(ii) If $\vec{u}, \vec{v}, \vec{w}$ are vectors in \mathbb{R}^{n}, and \vec{u} is a linear combination of \vec{v} and \vec{w}, then \vec{w} is a linear combination of \vec{u} and \vec{v}.
(iii) If A is an invertible $n \times n$ matrix, and B is any $n \times m$ matrix, then $\operatorname{ker}(A B)=\operatorname{ker}(B)$.
(iv) If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear, and $\vec{b} \in \mathbb{R}^{n}$, then the set of solutions to the equation $T \vec{x}=\vec{b}$ is a linear subspace of \mathbb{R}^{m}.
4. Consider the vectors $\vec{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \vec{u}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by:

$$
T \vec{x}=\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{2}+\left(\vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{1} .
$$

Show that T is a linear transformation, and compute its matrix (with respect to the standard basis).
(this page left blank)
5. Let $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis for \mathbb{R}^{2}, where $\vec{v}_{1}=\binom{1}{1}, \vec{v}_{2}=\binom{1}{2}$. Suppose that the matrix of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with respect to the standard basis \mathcal{E} of \mathbb{R}^{2} is

$$
[T]_{\mathcal{E}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right)
$$

Calculate $[T]_{\mathcal{B}}$, the expression of T with respect to the basis \mathcal{B}.
(this page left blank)

