LINEAR ALGEBRA - FIRST MIDTERM EXAM SOLUTIONS

1. Solution. The augmented matrix for this system is:

$$
\left(\begin{array}{ccccc}
1 & 1 & -1 & \vdots & 1 \\
-5 & 1 & 1 & \vdots & -7 \\
1 & -5 & 3 & \vdots & 3
\end{array}\right)
$$

Now compute the reduced row echelon form:

$$
\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & \vdots & 4 / 3 \\
0 & 1 & -2 / 3 & \vdots & -1 / 3 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right)
$$

This says that a particular solution is $z=0, x=4 / 3$, and $y=-1 / 3$. On the other hand, any other choice of z also gives a solution, so the solution is not unique.
2. Solution. Compute the reduced row echelon form of this matrix to get:

$$
\left(\begin{array}{ccccc}
1 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The leading variables are x_{1}, x_{3} and x_{5}, so a basis for the image consists of the corresponding columns of the original matrix:

$$
\text { Basis for the image: }\left\{\left(\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
-2 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)\right\}
$$

For the kernel, look at the nonleading variables x_{2} and x_{4}. Set $x_{2}=1, x_{4}=0$ and solve the homogeneous equation to get $x_{1}=1$ and $x_{3}=x_{5}=0$. Now set $x_{2}=0$, $x_{4}=1$ and solve the homogeneous equation to get $x_{1}=-2, x_{3}=-1$ and $x_{5}=0$. Hence,

$$
\text { Basis for the kernel: }\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
-1 \\
1 \\
0
\end{array}\right)\right\}
$$

3. (i) True. The reduced row echelon form is $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Three leading ones means the rank is three.
(ii) False. Take $\vec{u}=\vec{v}$ and \vec{w} independent of \vec{u}, for example.
(iii) True. Note that by linearity, $\operatorname{ker} B \subset \operatorname{ker} A B$ is always true. So we must show that $\operatorname{ker} A B \subset \operatorname{ker} B$. If $A B \vec{x}=\overrightarrow{0}$, then $B \vec{x} \in \operatorname{ker} A$. But if A is invertible, ker $A=\{\overrightarrow{0}\}$, so $\vec{x} \in \operatorname{ker} B$.
(iv) False. Linearity only holds if $\vec{b}=0$.
4. Solution. To prove linearity, we must show: (i) $T(\lambda \vec{x})=\lambda T(\vec{x})$ for all $\lambda \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^{3}$, and (ii) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{3}$. For (i),

$$
\begin{aligned}
T(\lambda \vec{x}) & =\left(\lambda \vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{2}+\left(\lambda \vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{1} \\
& =\lambda\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{2}+\lambda\left(\vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{1} \\
& =\lambda T(\vec{x})
\end{aligned}
$$

For (ii),

$$
\begin{aligned}
T(\vec{x}+\vec{y})= & \left(\{\vec{x}+\vec{y}\} \cdot \vec{u}_{1}\right) \vec{u}_{2}+\left(\{\vec{x}+\vec{y}\} \cdot \vec{u}_{2}\right) \vec{u}_{1} \\
= & \left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{2}+\left(\vec{y} \cdot \vec{u}_{1}\right) \vec{u}_{2} \\
& \quad+\left(\vec{x} \cdot \vec{u}_{2}\right) \vec{u}_{1}+\left(\vec{y} \cdot \vec{u}_{2}\right) \vec{u}_{1} \\
= & T(\vec{x})+T(\vec{y})
\end{aligned}
$$

To compute the matrix, we evaluate:

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\vec{u}_{2}-\vec{u}_{1}=\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\vec{u}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Hence, the matrix of T is:

$$
[T]=\left(\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

5. Let $S=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Then $S^{-1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$, and

$$
[T]_{\mathcal{B}}=S^{-1}[T]_{\mathcal{E}} S=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
9 & 15 \\
-4 & -7
\end{array}\right)
$$

