THE JOHNS HOPKINS UNIVERSITY
 Krieger School of Arts and Sciences
 SOLUTIONS TO FIRST MIDTERM EXAM - FALL 2005
 110.201 - LINEAR ALGEBRA

Instructor: Professor Carel Faber
Duration: 50 minutes October 19, 2005

No calculators allowed

$$
\text { Total }=100 \text { points }
$$

1. [20 points] Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
3 & -2 & 8 \\
2 & -2 & 3
\end{array}\right]
$$

Check your answer.
2. [20 points] Solve the linear system

$$
\left|\begin{array}{r}
2 x_{1}+4 x_{2}-2 x_{3}-10 x_{4}+2 x_{5}= \\
3 x_{1}+6 x_{2}+3 x_{3}+3 x_{4}-2 x_{5}= \\
x_{1}+2 x_{2}-4 \\
-2 x_{4}
\end{array}\right| .
$$

Check your answer.
3. [20 points] Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix

$$
A=\left[\begin{array}{cccc}
2 & -3 & 12 & 17 \\
3 & 2 & 5 & 6 \\
1 & 4 & -5 & -8
\end{array}\right]
$$

and let $U: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix

$$
B=\left[\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & -2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is given that $B=\operatorname{rref}(A)$.
(a) [5 points] Determine $T\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]$.
(b) $[5$ points $]$ Determine a basis for $\operatorname{ker}(U)$. Show your work.
(c) [5 points] Determine a basis for $\operatorname{ker}(T)$. Show your work.
(d) [5 points] Determine a basis for $\operatorname{im}(T)$. Show your work.
4. [20 points] Let P_{2} be the linear space of all polynomials of degree ≤ 2. It is a subspace of $F(\mathbb{R}, \mathbb{R})$. Consider the following elements of P_{2} :

$$
f_{1}=1-2 x+x^{2}, \quad f_{2}=2-3 x+5 x^{2}, \quad f_{3}=x-2 x^{2}, \quad f_{4}=-x^{2}
$$

(a) [5 points] Prove that $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly dependent elements of P_{2}.
(b) [5 points] Prove that $f_{1}, f_{2}, f_{3}, f_{4}$ span P_{2}.
(c) [5 points] Prove that $\mathcal{B}=\left(f_{1}, f_{3}, f_{4}\right)$ is a basis of P_{2}.
(d) $[\mathbf{5}$ points $]$ Find the \mathcal{B}-coordinate vector of f_{2}.
5. [20 points] Here we consider linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) [4 points] Let S be the reflection in the line $y=-x$. Determine the standard matrix of S.
(b) [4 points] Let T be the reflection in the line $y=x \sqrt{3}$. Determine the standard matrix of T.
(Note that the angle between $\vec{a}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ equals $\pi / 3$.)
(c) [4 points] Determine the standard matrix of the composite transformation ST.
(d) [4 points] Prove that $S T$ is a rotation and find the angle of rotation (in the counterclockwise direction).
(e) [4 points] Is $T S$ the inverse of $S T$? Explain your answer as well as you can.

