THE JOHNS HOPKINS UNIVERSITY
 Krieger School of Arts and Sciences
 SOLUTIONS TO FIRST MIDTERM EXAM - FALL 2005
 110.201 - LINEAR ALGEBRA

Instructor: Professor Carel Faber
Duration: 50 minutes October 19, 2005

No calculators allowed
Total $=100$ points

1. [20 points] Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
3 & -2 & 8 \\
2 & -2 & 3
\end{array}\right]
$$

Check your answer.
Answer:

$$
\left[\begin{array}{lll|lll}
1 & -1 & 1 & 1 & 0 & 0 \\
3 & -2 & 8 & 0 & 1 & 0 \\
2 & -2 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & 7 & 1 & -5 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right] \rightarrow
$$

$$
\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 10 & 1 & -6 \\
0 & 1 & 0 & 7 & 1 & -5 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right] .
$$

So

$$
A^{-1}=\left[\begin{array}{ccc}
10 & 1 & -6 \\
7 & 1 & -5 \\
-2 & 0 & 1
\end{array}\right] .
$$

Check:

$$
\left[\begin{array}{lll}
1 & -1 & 1 \\
3 & -2 & 8 \\
2 & -2 & 3
\end{array}\right]\left[\begin{array}{ccc}
10 & 1 & -6 \\
7 & 1 & -5 \\
-2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

and

$$
\left[\begin{array}{ccc}
10 & 1 & -6 \\
7 & 1 & -5 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 1 \\
3 & -2 & 8 \\
2 & -2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Actually, it suffices to check one of the two, by Fact 2.4.9.
2. [20 points] Solve the linear system

$$
\left|\begin{array}{r}
2 x_{1}+4 x_{2}-2 x_{3}-10 x_{4}+2 x_{5}= \\
3 x_{1}+6 x_{2}+3 x_{3}+3 x_{4}-2 x_{5}= \\
x_{1}+2 x_{2}-4 \\
-2 x_{4}
\end{array}\right| .
$$

Check your answer.

Answer:

$$
\begin{aligned}
{\left[\begin{array}{ccccc:c}
2 & 4 & -2 & -10 & 2 & 7 \\
3 & 6 & 3 & 3 & -2 & -4 \\
1 & 2 & 0 & -2 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{ccccc|c}
1 & 2 & 0 & -2 & 0 & 1 \\
3 & 6 & 3 & 3 & -2 & -4 \\
2 & 4 & -2 & -10 & 2 & 7
\end{array}\right] \rightarrow \\
{\left[\begin{array}{ccccc|c}
1 & 2 & 0 & -2 & 0 & 1 \\
0 & 0 & 3 & 9 & -2 & -7 \\
0 & 0 & -2 & -6 & 2 & 5
\end{array}\right] } & \rightarrow\left[\begin{array}{ccccc|c}
1 & 2 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 3 & 0 & -2 \\
0 & 0 & -2 & -6 & 2 & 5
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{ccccc|c}
1 & 2 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 3 & 0 & -2 \\
0 & 0 & 0 & 0 & 2 & 1
\end{array}\right] }
\end{aligned} \rightarrow\left[\begin{array}{ccccc|c}
1 & 2 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 3 & 0 & -2 \\
0 & 0 & 0 & 0 & 1 & \frac{1}{2}
\end{array}\right] .
$$

Thus $x_{2}=s$ and $x_{4}=t$ (the free variables) and $x_{5}=\frac{1}{2}, x_{3}=-3 x_{4}-2=-2-3 t$, and $x_{1}=-2 x_{2}+2 x_{4}+1=1-2 s+2 t$.

So

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
1-2 s+2 t \\
s \\
-2-3 t \\
t \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0 \\
\frac{1}{2}
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]
$$

is the solution of the linear system (where s and t are arbitrary real numbers).
Check:

$$
\begin{aligned}
& 2(1-2 s+2 t)+4 s-2(-2-3 t)-10 t+2\left(\frac{1}{2}\right)=2-4 s+4 t+4 s+4+6 t-10 t+1=7, \\
& 3(1-2 s+2 t)+6 s+3(-2-3 t)+3 t-2\left(\frac{1}{2}\right)=3-6 s+6 t+6 s-6-9 t+3 t-1=-4
\end{aligned}
$$

and

$$
(1-2 s+2 t)+2 s-2 t=1-2 s+2 t+2 s-2 t=1
$$

3. [20 points] Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix

$$
A=\left[\begin{array}{cccc}
2 & -3 & 12 & 17 \\
3 & 2 & 5 & 6 \\
1 & 4 & -5 & -8
\end{array}\right]
$$

and let $U: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix

$$
B=\left[\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & -2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is given that $B=\operatorname{rref}(A)$.
(a) [5 points] Determine $T\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]$.
(b) [5 points] Determine a basis for $\operatorname{ker}(U)$. Show your work.
(c) [5 points] Determine a basis for $\operatorname{ker}(T)$. Show your work.
(d) [5 points] Determine a basis for $\operatorname{im}(T)$. Show your work.

Answer:

(a) $T\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}29 \\ 11 \\ -13\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \cdot\left(\right.$ Thus $\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]$ is in $\operatorname{ker}(T)$).
(b) Solving $B \vec{x}=\overrightarrow{0}$ immediately gives $x_{3}=s, x_{4}=t, x_{1}=-3 x_{3}-4 x_{4}=-3 s-4 t$, and $x_{2}=2 x_{3}+3 x_{4}=2 s+3 t$. Thus $\vec{x}=\left[\begin{array}{c}-3 s-4 t \\ 2 s+3 t \\ s \\ t\end{array}\right]=s\left[\begin{array}{c}-3 \\ 2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-4 \\ 3 \\ 0 \\ 1\end{array}\right]$ is the solution. It follows immediately that

$$
\left(\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
3 \\
0 \\
1
\end{array}\right]\right)
$$

is a basis for $\operatorname{ker}(U)$.
(c) Since $B=\operatorname{rref}(A)$, we have that $\operatorname{ker}(A)=\operatorname{ker}(B)$, thus $\operatorname{ker}(T)=\operatorname{ker}(U)$. So we can take the same basis as in (b).
(d) We know that a basis for $\operatorname{im}(T)=\operatorname{im}(A)$ is given by the column vectors of A corresponding to the column vectors of B that contain a leading 1 . So

$$
\left(\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-3 \\
2 \\
4
\end{array}\right]\right)
$$

is a basis for $\operatorname{im}(T)$.
4. [20 points] Let P_{2} be the linear space of all polynomials of degree ≤ 2. It is a subspace of $F(\mathbb{R}, \mathbb{R})$. Consider the following elements of P_{2} :

$$
f_{1}=1-2 x+x^{2}, \quad f_{2}=2-3 x+5 x^{2}, \quad f_{3}=x-2 x^{2}, \quad f_{4}=-x^{2}
$$

(a) $[5$ points $]$ Prove that $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly dependent elements of P_{2}.
(b) $[\boldsymbol{5}$ points $]$ Prove that $f_{1}, f_{2}, f_{3}, f_{4}$ span P_{2}.
(c) $[5$ points $]$ Prove that $\mathcal{B}=\left(f_{1}, f_{3}, f_{4}\right)$ is a basis of P_{2}.
(d) $[\mathbf{5}$ points $]$ Find the \mathcal{B}-coordinate vector of f_{2}.

Answer:

(a) We know that $\operatorname{dim}\left(P_{2}\right)=3$. That means that any four elements of P_{2} are linearly dependent. Alternatively, $2 f_{1}-f_{2}+f_{3}-5 f_{4}=0$ is a nontrivial linear relation between these four elements.
(b) We see that $x^{2}=-f_{4}, x=f_{3}-2 f_{4}$, and $1=f_{1}+2 f_{3}-3 f_{4}$. Thus any polynomial of degree ≤ 2 can be written as a linear combination of f_{1}, f_{3}, f_{4}. So these three elements span P_{2} already. So $f_{1}, f_{2}, f_{3}, f_{4}$ span P_{2} as well.
(c) In (b) we already saw that f_{1}, f_{3}, f_{4} span P_{2}. But it is easy to see that they are linearly independent as well. We can do this by explicit calculation (check that there is no nontrivial linear relation between these three elements) or we can use the fact that three elements in a linear space of dimension 3 that span the linear space are automatically linearly independent. (The analogue of Fact 3.3.4.d.)
(d) From (a) we have $f_{2}=2 f_{1}+f_{3}-5 f_{4}$, thus $\left[f_{2}\right]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ 1 \\ -5\end{array}\right]$ is the \mathcal{B}-coordinate vector of f_{2}.
5. [20 points] Here we consider linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) [4 points] Let S be the reflection in the line $y=-x$. Determine the standard matrix of S.
(b) [4 points] Let T be the reflection in the line $y=x \sqrt{3}$. Determine the standard matrix of T.
(Note that the angle between $\vec{a}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ equals $\pi / 3$.)
(c) [4 points] Determine the standard matrix of the composite transformation ST.
(d) [4 points] Prove that $S T$ is a rotation and find the angle of rotation (in the counterclockwise direction).
(e) [4 points] Is $T S$ the inverse of $S T$? Explain your answer as well as you can.

Answer:

(a) $S\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ yields the first column and $S\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ yields the second column. The matrix is $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
(b) $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\cos \frac{2 \pi}{3} \\ \sin \frac{2 \pi}{3}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \sqrt{3}\end{array}\right]$ yields the first column and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}\cos \frac{\pi}{6} \\ \sin \frac{\pi}{6}\end{array}\right]=$ $\left[\begin{array}{c}\frac{1}{2} \sqrt{3} \\ \frac{1}{2}\end{array}\right]$ yields the second column. The matrix is $\left[\begin{array}{cc}-\frac{1}{2} & \frac{1}{2} \sqrt{3} \\ \frac{1}{2} \sqrt{3} & \frac{1}{2}\end{array}\right]$.
(c) It is

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \sqrt{3} \\
\frac{1}{2} \sqrt{3} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} \sqrt{3} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} \sqrt{3}
\end{array}\right] .
$$

(d) Geometrically, one sees that first reflecting in $y=x \sqrt{3}$ and then in $y=-x$ is the same as a counterclockwise rotation over an angle that is twice as large as the angle between $\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. The angle between the two vectors is $\frac{\pi}{6}+\frac{\pi}{4}=\frac{5 \pi}{12}$, so the angle of rotation is $\frac{5 \pi}{6}$.
Alternatively, one recognizes that the matrix in (c) is of the form

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

for $\theta=\frac{5 \pi}{6}$. Thus $S T$ is a counterclockwise rotation over $\frac{5 \pi}{6}$.
(e) The answer is yes. One can see this by computing the matrix of $T S$ as in (c) and checking that that matrix is the inverse of the matrix for $S T$. But this doesn't provide so much explanation. One explanation is as follows: if S and T are invertible linear transformations (as is the case here), then the inverse of $S T$ is $T^{-1} S^{-1}$. This holds in general. But in our case, T and S are reflections. A reflection equals its own inverse! So $T^{-1} S^{-1}=T S$ is the inverse of $S T$. Another explanation is more geometric: just as in (d), TS is a rotation, but the angle of rotation is opposite to the angle of rotation of $S T$ (check this). Thus $T S$ is the inverse of $S T$.

