Solutions to Math 201 Midterm I Fall 07, Zucker

1. a) The \mathcal{B}-matrix for T is the matrix B of the linear transformation T expressed in the \mathcal{B} coordinates $[T(\mathbf{x})]_{\mathcal{B}}=B[\mathbf{x}]_{\mathcal{B}}$, where $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ are the coordinates of $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}$ expressed in the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. To find $B=\left[\begin{array}{c}{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathcal{B}}} \\ \mid \\ \mid\end{array}\right]$ we calculate $T\left(\mathbf{b}_{i}\right)$ and express them in the \mathcal{B} coordinates:

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \text { i.e. }\left[T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right. \\
\left.\left.T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { i.e. }\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
\left.\left.T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { i.e. } \quad T\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
\end{gathered}
$$

Hence $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]$.
b) By linearity $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=T\left(2\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)-T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=2\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
2. a) We apply Gauss-Jordan elimination to the augmented matrix for the system:
$\left[\begin{array}{ccccc}2 & 1 & 1 & -2 & 3 \\ 1 & 1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 4 & 5\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}1 & 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & -2 & 3 \\ 1 & 2 & -1 & 5 & 4\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}1 & 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & -4 & -1 \\ 0 & 1 & -1 & 4 & 2\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}1 & 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}1 & 0 & 1 & -3 & 1 \\ 0 & 1 & -1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Since the last equation in the inhomogeneous case would say $0=1$ it is inconsistent.
The reduction however gives the $\operatorname{rref}(A)$ as the 4 first columns of this matrix.
b) Moreover the same calculation in the inhomogeneous case $A \mathbf{x}=\mathbf{0}$ gives that \mathbf{x} is in the kernel of A if $x_{1}+x_{3}-3 x_{4}=0$ and $x_{2}-x_{3}+4 x_{4}=0$ where x_{3} and x_{4} are free so we obtain $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-x_{3}+3 x_{4} \\ x_{3}+4 x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{c}3 \\ -4 \\ 0 \\ 1\end{array}\right] x_{4}$ so the vectors $\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ -4 \\ 0 \\ 1\end{array}\right]$ form a basis for the kernel.
c) The dimension of the image of A can be obtain from the fundamental theorem of algebra:

$$
\operatorname{dim}(\operatorname{im} A)+\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{domain} A)
$$

once we know that the dimension of the kernel of A is 2 and the dimension of the domain of A i.e. \mathbb{R}^{4} is 4 so dimension of the image of A is 2 . Alternatively, the columns of A corresponding to columns of $\operatorname{rref}(A)$ with a leading one form a basis for the image of A. Hence the first two columns of A form a basis for the image of A so it has dimension 2 .
$\mathbf{3}$ a) That $\mathbf{u}, \mathbf{v} \in Y$ implies that $\mathbf{u}+\mathbf{v} \in Y$ and $\lambda \mathbf{u} \in Y$.
b) $\operatorname{dim} Y$ is the number of elements in a basis for Y.
c) If $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right] \in Y$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right] \in Y$ then $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2} \\ u_{3}+v_{3} \\ u_{4}+v_{4}\end{array}\right]$ satisfy
$2 x_{1}+x_{2}+x_{3}-2 x_{4}=2\left(u_{1}+v_{1}\right)+u_{2}+v_{2}+u_{3}+v_{3}-2\left(u_{4}+v_{4}\right)$
$=2 u_{1}+u_{2}+u_{3}-2 u_{4}+2 v_{1}+v_{2}+v_{3}-2 v_{4}=0+0=0$ so $\mathbf{x}=\mathbf{u}+\mathbf{v} \in Y$.
One similarly proves that $\lambda \mathbf{u} \in Y$.
d) The rref of the system is $x_{1}+x_{2} / 2+x_{3} / 2-x_{4}=0$. Hence x_{2}, x_{3}, x_{4} are free variables and the solution set is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-1 / 2 \\ 1 \\ 0 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{c}-1 / 2 \\ 0 \\ 1 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right] x_{4}$ so $\left[\begin{array}{c}-1 / 2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 / 2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$ form a basis for Y. We claim that these 3 vectors, $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ together with any vector that is not in Y, e.g. $\mathbf{b}_{4}=\mathbf{e}_{4}$ of the standard basis, form a basis for \mathbb{R}^{4}. To prove this it is sufficient to show that they are linearly independent since 4 vectors in \mathbb{R}^{4} form a basis if they are linearly independent. In fact if $\lambda_{1} \mathbf{b}_{1}+\lambda_{2} \mathbf{b}_{2}+\lambda_{3} \mathbf{b}_{3}+\lambda_{4} \mathbf{b}_{4}=\mathbf{0}$ then if $\lambda_{4} \neq 0$ it follows that $\mathbf{b}_{4}=-\left(\lambda_{1} \mathbf{b}_{1}+\lambda_{2} \mathbf{b}_{2}+\lambda_{3} \mathbf{b}_{3}\right) / \lambda_{4} \in Y$, which is a contradiction so we must have that $\lambda_{4}=0$. However then we must have $\lambda_{1} \mathbf{b}_{1}+\lambda_{2} \mathbf{b}_{2}+\lambda_{3} \mathbf{b}_{3}=\mathbf{0}$, but since $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are linearly independent it follows that also $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ so $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}$ are linearly independent.
4. $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}\sin \theta \\ \cos \theta\end{array}\right]$ so $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
5. We need to determine the dimension of the image of $A=\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 1 & 2 & 1 & 3 \\ 1 & 3 & 2 & 4 \\ 1 & 0 & -1 & 1\end{array}\right]$.

Row reduction gives $\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 1 & 2 & 1 & 3 \\ 1 & 3 & 2 & 4 \\ 1 & 0 & -1 & 1\end{array}\right] \Leftrightarrow\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & -1 & -1 & -1\end{array}\right] \Leftrightarrow\left[\begin{array}{llll}1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Leftrightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
The columns of A corresponding to columns of $\operatorname{rref}(A)$ with a leading one form a basis for the image of A. Hence the first two columns of A form a basis for the image of A so it has dimension 2.
6. a) If $A=B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ then $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and they all have rank 1 .

The matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ both have rank 1 but $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has rank 0 .
b) We have that $\operatorname{Im}(A B) \subset \operatorname{Im}(A)$. In fact if $\mathbf{y} \in \operatorname{Im}(A B)$ then $\mathbf{y}=A B \mathbf{x}$ for some \mathbf{x} so then $\mathbf{y}=A \mathbf{z}$, where $\mathbf{z}=B \mathbf{x}$ and so $\mathbf{y} \in \operatorname{Im}(A)$. Since the rank is the dimension of the image, we must therefore have that $\operatorname{rank}(A B) \leq \operatorname{rank}(A) \leq 1$.
c) We have that $\operatorname{Ker}(B) \subset \operatorname{Ker}(A B)$. In fact if $\mathbf{x} \in \operatorname{Ker}(B)$ then $B \mathbf{x}=\mathbf{0}$ so $A B \mathbf{x}=\mathbf{0}$ so then $\mathbf{x} \in \operatorname{Ker}(A B)$. With the nullity denoting the dimension of the kernel it follows that $\operatorname{nullity}(B) \leq \operatorname{nullity}(A B)$. Using the fundamental theorem of linear algebra:

$$
\operatorname{dim}(\operatorname{im} C)+\operatorname{dim}(\operatorname{ker} C)=\operatorname{dim}(\operatorname{domain} C)
$$

applied to B gives that $\operatorname{rank}(B)+\operatorname{nullity}(B)=2$ and since by assumption $\operatorname{rank}(B)=1$ it follows that nullity $(B)=1$ and therefore nullity $(A B) \geq 1$ and applying the fundamental theorem of linear algebra to $A B$ gives that $\operatorname{rank}(A B)+\operatorname{nullity}(A B)=2$ so $\operatorname{rank}(A B) \leq 1$.
7. False: T could e.g. just be the zero transformation.

