> Name $\ldots \ldots \ldots \ldots \ldots \ldots$
> Section/ Name of your TA $\ldots \ldots \ldots \ldots \ldots \ldots$
> Midterm Exam $1 \begin{gathered}\text { 35pts. }\end{gathered}$
> Math 201 VER

- There are 10 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- Read all the questions carefully.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
(1) $\ldots / 3$
(2) $\ldots \ldots . . / 4$
(3) $\ldots \ldots \ldots$. 5
(4) $\ldots \ldots . . / 4$
(5) $\ldots \ldots . . / 3$
(6) $\ldots \ldots \ldots / 5$
(7) $\ldots \ldots . . / 4$
(8) $\ldots \ldots . . / 3$
(9) $\ldots \ldots \ldots / 4$

Total/35
(1) 3pts. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function. What does it mean for T to be a linear transformation?
(2) 4 pts. Find the orthogonal projection of the vectors $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ onto the line spanned (determined) by the vector $\vec{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(3) 5pts. Find the matrix A representing the linear transformation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that reflects a vector along the line $x-2 y=0$. Show work.
(4) $4 p t s$ Write down A^{-1} without performing any computations. Give reasons for your answer. The matrix A here is the matrix you found in the Problem 3.
(5) 3pts. Find the volume of the parallelopiped determined by the vectors

$$
\vec{u}=\left[\begin{array}{r}
2 \\
-1 \\
4
\end{array}\right], \vec{v}=\left[\begin{array}{r}
0 \\
1 \\
-2
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{r}
-1 \\
1 \\
-3
\end{array}\right] .
$$

(6) 5pts. Let $B=\left[\begin{array}{rrr}2 & 0 & -1 \\ -1 & 1 & 1 \\ 4 & -2 & -3\end{array}\right]$. Find all $\vec{x} \in \mathbb{R}^{3}$ such that $B \vec{x}=\overrightarrow{0}$.
(7) $4 p t s$. Define the Rank of a $m \times n$ matrix.

$$
\text { For what values of } k \text { does the system } B \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
k
\end{array}\right] \text { have a solution? }
$$

The matrix B here is same as that in Problem 6.
(8) 3pts. Let $\vec{v}=\left[\begin{array}{r}1 / 2 \\ 1 / 2 \\ 0\end{array}\right]$. Given that \vec{v} is a solution to the following system, find all possible solutions of the following system of equations without any computations. Explain your answer.

$$
\begin{aligned}
2 x-z & =1 \\
-x+y+z & =0 \\
4 x-2 y-3 z & =1
\end{aligned}
$$

(9) $4 p t s$. Find the Adjoint of the matrix B if it exists.

Is B invertible? Explain your answer. The matrix B here is same as that in Problem 6.

