Name

Suggested Answers to Practice Exam 1 Math 201

1(a) 7pts. Find all solutions to the given system of equations.

Soln We first write down the augmented matrix.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & -1 & 0 \\ 1 & -1 & 2 & 2 & 0 \\ 1 & 1 & 3 & 6 & 0 \end{bmatrix}$$

Do row operations, R2 - 2R1, R3 - R1 and R4 - R1.

Do row operations, R3 + R2 and R4 - R2.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -2 & -3 & 0 \\ 0 & 0 & -1 & -2 & 0 \\ 0 & 0 & 4 & 8 & 0 \end{bmatrix}$$

Do row operation R4 + 4R3.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -2 & -3 & 0 \\ 0 & 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Now we apply back substitution to get

$$x_3 = -2x_4$$

$$x_2 - 2x_3 - 3x_4 = 0$$

$$\implies x_2 = -x_4$$

$$x_1 = -x_3 - x_4$$

$$\implies x_1 = x_4$$

Solution is

$$\begin{array}{c} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -2x_4 \\ x_4 \text{ is free} \end{array}$$

1(b) 3pts. Are the vectors
$$\begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1\\2\\6 \end{bmatrix}$ linearly independent?
Why or why not?
Soln: If we set up a homogeneous system for the vectors $\begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\2\\3 \end{bmatrix}$

and $\begin{bmatrix} 1\\ -1\\ 2\\ 6 \end{bmatrix}$ to check for linear independence we get the same system as

many solutions. So they are not linearly independent.

2(a) 7*pts.* Let
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
. Compute the inverse of A , if it exists.
Soln:

Ω	1	
U	T	υĮ
0	0	1
	0	$egin{array}{ccc} 1 & 0 \ 0 & 1 \ 0 & 0 \ \end{array}$

Exchange rows R1 and R2.

 $\mathbf{2}$

1	1	1	0	1	0
2	1	-1	1	0	0
2	2	$\begin{array}{c}1\\-1\\3\end{array}$	0	0	1

 $\mathrm{R2}$ -2R1 and R3-2R1 give

$$\begin{bmatrix} 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & -1 & -3 & | & 1 & -2 & 0 \\ 0 & 0 & 1 & | & 0 & -2 & 1 \end{bmatrix}$$

R2 + 3R3 and R1 - R3 imply,

Finally R1 + R2 and (-1)R3 give us

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & -5 & 2 \\ 0 & 1 & 0 & | & -1 & 8 & -3 \\ 0 & 0 & 1 & | & 0 & -2 & 1 \end{bmatrix}$$

Therefore
$$A^{-1} = \begin{bmatrix} 1 & -5 & 2 \\ -1 & 8 & -3 \\ 0 & -2 & 1 \end{bmatrix}$$
.

2(b) 3pts. Find all possible solutions for the system

$$2x_{1} + x_{2} - x_{3} = 2$$

$$x_{1} + x_{2} + x_{3} = 3$$

$$2x_{1} + 2x_{2} + 3x_{3} = -1$$
Soln: In matrix form the above system is equivalent to
$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}.$$
Therefore $x = A^{-1} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -15 \\ 25 \\ -7 \end{bmatrix}$

(3) *Spts.* Let
$$v_1 = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 2\\ 1\\ h \end{bmatrix}$.

3(a) 4pts. Find all values of h such that $v = \begin{bmatrix} 3\\ -1 \end{bmatrix}$ in the Span $\{v_1, v_2, v_3\}$.

Soln: For v to be in the Span $\{v_1, v_2, v_3\}$, the system $x_1v_1 + x_2v_2 + x_3v_3 = v$ should have a solution. So the following augmented system should be consistent.

$$\begin{bmatrix} 1 & 1 & 2 & | & 1 \\ 2 & -1 & 1 & | & 8 \\ 1 & 2 & h & | & -1 \end{bmatrix}$$

R2-2R1 and R3 -R1 imply,

$$\begin{bmatrix} 1 & 1 & 2 & | & 1 \\ 0 & -3 & 3 & | & 6 \\ 0 & 1 & h-2 & | & -2 \end{bmatrix}$$

R2/3 implies

$$\begin{bmatrix} 1 & 1 & 2 & | & 1 \\ 0 & -1 & 1 & | & 2 \\ 0 & 1 & h - 2 & | & -2 \end{bmatrix}$$

R3 + R2 then gives us

Now if $h - 3 \neq 0$ then, the system will obviously have a unique solution. Also, if h - 3 = 0 there will be a row of zeros and the system will have infinitely many solutions. Therefore, the v is in the Span $\{v_1, v_2, v_3\}$ for all values of h.

3(b) 4pts. Find all values of h such that v_1 , v_2 and v_3 linearly independent.

Soln: In order to check that v_1 , v_2 and v_3 are linearly independent, we need to check that the system $x_1v_1 + x_2v_2 + x_3v_3 = 0$ has only trivial solution. Now, from part (a) we will get the row echelon for the system as (only augemented column will change and in this case they are just a column of zeros) follows:

Now, this system will have a unique solution only when $h - 3 \neq 0$ i.e., $h \neq 3$. The vectors are hence linearly independent for all h other than 3.

(4) 12pts. State True or False with justification. 3pts. each for the justification.
(a) If A is a 2 × 2 matrix such that A² = 0 then A = 0.

Soln: False. Consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $A^2 = 0$ but A is non-zero.

(b) If A, B and C are 2×2 invertible matrices then, (AB)C is invertible. Soln: True. Product of invertible matrices is invertible. Therefore, AB will be invertible. But C is also invertible hence, (AB)C is also invertible. In fact its inverse is given by $C^{-1}B^{-1}A^{-1}$.

4(c) The vectors
$$\begin{bmatrix} 4\\-8\\2 \end{bmatrix}$$
, $\begin{bmatrix} 6\\-12\\3 \end{bmatrix}$ and $\begin{bmatrix} -2\\4\\-1 \end{bmatrix}$, span $\mathbb{I}\!\!R^3$.

- Soln: False. Note that the vectors are scalar multiples of each other. Hence they can only span a line.
- 4(d) The matrix $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ represents reflection about a line.

Soln: False : Note that applying this matrix twice to the vector $\begin{bmatrix} 1\\0 \end{bmatrix}$ will give us a the vector $\begin{bmatrix} 2\\0 \end{bmatrix}$. But if this was a reflection along a line, multiplying this matrix

-END-