\qquad

Suggested Answers to Practice Exam 1 Math 201

1(a) 7pts. Find all solutions to the given system of equations.

$$
\begin{gathered}
x_{1}+x_{3}+x_{4}=0 \\
2 x_{1}+x_{2}-x_{4}=0 \\
x_{1}-x_{2}+2 x_{3}+2 x_{4}=0 \\
x_{1}+x_{2}+3 x_{3}+6 x_{4}=0
\end{gathered}
$$

Soln We first write down the augmented matrix.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
2 & 1 & 0 & -1 & 0 \\
1 & -1 & 2 & 2 & 0 \\
1 & 1 & 3 & 6 & 0
\end{array}\right]
$$

Do row operations, R2-2R1, R3-R1 and R4-R1.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & -2 & -3 & 0 \\
0 & -1 & 1 & 1 & 0 \\
0 & 1 & 2 & 5 & 0
\end{array}\right]
$$

Do row operations, R3 + R2 and R4-R2.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & -2 & -3 & 0 \\
0 & 0 & -1 & -2 & 0 \\
0 & 0 & 4 & 8 & 0
\end{array}\right]
$$

Do row operation R4 $+4 R 3$.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & -2 & -3 & 0 \\
0 & 0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now we apply back substitution to get

$$
\begin{aligned}
x_{3} & =-2 x_{4} \\
x_{2}-2 x_{3}-3 x_{4} & =0 \\
\Longrightarrow x_{2} & =-x_{4} \\
x_{1} & =-x_{3}-x_{4} \\
\Longrightarrow x_{1} & =x_{4}
\end{aligned}
$$

Solution is

$$
\left\{\begin{array}{r}
x_{1}=x_{4} \\
x_{2}=-x_{4} \\
x_{3}=-2 x_{4} \\
x_{4} \text { is free }
\end{array}\right.
$$

1(b) 3pts. Are the vectors $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 6\end{array}\right]$ linearly independent? Why or why not?
Soln: If we set up a homogeneous system for the vectors $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 6\end{array}\right]$ to check for linear independence we get the same system as in part (a). From solution to 1(a) we see that the system has infinitely many solutions. So they are not linearly independent.

2(a) Ypts. Let $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 3\end{array}\right]$. Compute the inverse of A, if it exists.
Soln:

$$
\left[\begin{array}{rrr|rrr}
2 & 1 & -1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 2 & 3 & 0 & 0 & 1
\end{array}\right]
$$

Exchange rows R1 and R2.

$$
\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 1 & -1 & 1 & 0 & 0 \\
2 & 2 & 3 & 0 & 0 & 1
\end{array}\right]
$$

R2-2R1 and R3-2R1 give

$$
\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & -1 & -3 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right]
$$

$\mathrm{R} 2+3 \mathrm{R} 3$ and R1-R3 imply,

$$
\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 0 & 3 & -1 \\
0 & -1 & 0 & 1 & -8 & 3 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right]
$$

Finally R1 + R2 and (-1)R3 give us

$$
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & -5 & 2 \\
0 & 1 & 0 & -1 & 8 & -3 \\
0 & 0 & 1 & 0 & -2 & 1
\end{array}\right]
$$

Therefore $A^{-1}=\left[\begin{array}{rrr}1 & -5 & 2 \\ -1 & 8 & -3 \\ 0 & -2 & 1\end{array}\right]$.

2(b) 3pts. Find all possible solutions for the system

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3}=2 \\
x_{1}+x_{2}+x_{3}=3 \\
2 x_{1}+2 x_{2}+3 x_{3}=-1
\end{aligned}
$$

Soln: In matrix form the above system is equivalent to $\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=$

$$
\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right] . \text { Therefore } x=A^{-1}\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-15 \\
25 \\
-7
\end{array}\right]
$$

(3) 8pts. Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}2 \\ 1 \\ h\end{array}\right]$. 3(a) 4 pts. Find all values of h such that $v=\left[\begin{array}{r}1 \\ 8 \\ -1\end{array}\right]$ in the $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.

Soln: For v to be in the $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$, the system $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=v$ should have a solution. So the following augmented system should be consistent.

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 1 \\
2 & -1 & 1 & 8 \\
1 & 2 & h & -1
\end{array}\right]
$$

R2-2R1 and R3-R1 imply,

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 1 \\
0 & -3 & 3 & 6 \\
0 & 1 & h-2 & -2
\end{array}\right]
$$

R2/3 implies

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 1 \\
0 & -1 & 1 & 2 \\
0 & 1 & h-2 & -2
\end{array}\right]
$$

$R 3+R 2$ then gives us

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 1 \\
0 & -1 & 1 & 2 \\
0 & 0 & h-3 & 0
\end{array}\right]
$$

Now if $h-3 \neq 0$ then, the system will obviously have a unique solution. Also, if $h-3=0$ there will be a row of zeros and the system will have infinitely many solutions. Therefore, the v is in the $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ for all values of h.

3(b) 4pts. Find all values of h such that v_{1}, v_{2} and v_{3} linearly independent.
Soln: In order to check that v_{1}, v_{2} and v_{3} are linearly independent, we need to check that the system $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0$ has only trivial solution. Now, from part (a) we will get the row echelon for the system as (only augemented column will change and in this case they are just a column of zeros) follows:

$$
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & h-3 & 0
\end{array}\right]
$$

Now, this system will have a unique solution only when $h-3 \neq 0$ i.e., $h \neq 3$. The vectors are hence linearly independent for all h other than 3.
(4) 12pts. State True or False with justification. 3pts. each for the justification.
(a) If A is a 2×2 matrix such that $A^{2}=0$ then $A=0$.

Soln: False. Consider the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then $A^{2}=0$ but A is non-zero.
(b) If A, B and C are 2×2 invertible matrices then, $(A B) C$ is invertible. Soln: True. Product of invertible matrices is invertible. Therefore, $A B$ will be invertible. But C is also invertible hence, $(A B) C$ is also invertible. In fact its inverse is given by $C^{-1} B^{-1} A^{-1}$.

4(c) The vectors $\left[\begin{array}{r}4 \\ -8 \\ 2\end{array}\right],\left[\begin{array}{r}6 \\ -12 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}-2 \\ 4 \\ -1\end{array}\right]$, span \mathbb{R}^{3}.
Soln: False. Note that the vectors are scalar multiples of each other. Hence they can only span a line.
4(d) The matrix $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ represents reflection about a line.
Soln: False : Note that applying this matrix twice to the vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ will give us a the vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$. But if this was a reflection along a line, multiplying this matrix

-END-

