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Question 1. [30 points] For the system x− y + 3z = 1, y = −2x+ 5, 9z − x− 5y + 7 = 0,
do the following:

(a) Write the system in the matrix form Ax = b, for x =

 x
y
z

.
Strategy: Reorder the equations to line up the variables and then dig out the matrix A.

Solution: First, note that the equations are not in an order to “see” the matrix equation. We
reorder them to line up the variables as they occur:

(I) x −y +3z = 1
(II) 2x +y = 5
(III) −x −5y +9z = −7

Then you can easily “pull out” the parts of the matrix equation: 1 −1 3
2 1 0
−1 −5 9

 x
y
z

 =

 1
5
−7

 .

(b) Write out the augmented matrix for this system and calculate its row-reduced echelon
form.

Solution: The augmented matrix is just the 3× 4 matrix
[
A
∣∣b], or 1 −1 3 | 1

2 1 0 | 5
−1 −5 9 | −7

 .

Row reduction operations take us to 1 −1 3 | 1
2 1 0 | 5
−1 −5 9 | −7

 2(I)− (II)→ (II)
(I) + (III)→ (III)

=⇒

 1 −1 3 | 1
0 −3 −6 | −3
0 −6 12 | −6


 1 −1 3 | 1

0 −3 −6 | −3
0 −6 12 | −6

 − 1
3
(II)→ (II)

6(II) + (III)→ (III)
=⇒

 1 −1 3 | 1
0 1 −2 | 1
0 0 0 | 0


 1 −1 3 | 1

0 1 −2 | 1
0 0 0 | 0

 (II) + (I)→ (I)
=⇒

 1 0 1 | 2
0 1 −2 | 1
0 0 0 | 0

 .

This last aumented matrix is in reduced-row echelon form.
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(c) Write out the complete set of solutions (if they exist) in vector form using parameters
if needed.

Strategy: Use the resulting equations form the row-reduced echelon form of the augmented matrix
to construct the solutions set. For each free-variable, associate a parameter and then write the other
variable in terms of the free variable. Then create a vector version.

Solution: Using the row-reduced echelon form of the augmented matrix from the last part, we can
write out the two non-trivial equations immediately: We get

x + z = 2

y − 2z = 1.

The variable z is a free-variable. Call it z = t. Then we get the three equations

x = 2− t

y = 1 + 2t

z = t

in a parameterized form. In vector form, we get

x =

 x
y
z

 =

 2
1
0

+ t

 −1
2
1

 .

(d) Calculate the inverse of the coefficient matrix A you found in part (a), if it exists, or
show that A−1 doesn’t exist.

Strategy: Use parts (a) and (b) to show that the inverse cannot exist for A.

Solution: From part (a), we know

A =

 1 −1 3
2 1 0
−1 −5 9

 .

And from part (b), we see its row-reduced echelon form is

rref(A) =

 1 0 1
0 1 −2
0 0 0

 .

Immediately, we know that rank(A3×3) = 2 , so that A is not invertible. Hence A−1 does nto exist.
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Question 2. [30 points] Let V be the subspace of R4 given by all solutions to the equation 2x1 −
x2 + 3x3 = 0.

(a) What is the dimension of V ?

Solution: There is little to do here. V is determined by a single linear equation in R4. Hence the

set of solutions is a 4− 1 = 3-dimensional space. Hence dim(V ) = 3.

(b) Construct a linear transformation T : R3 → R4, T (x) = Ax, where V = im(A). Then
use A to construct a basis for im(A). You will need to verify that what you have is a
basis.

Strategy: Find three sets of solutions to the equation for V in such a way that they are sufficiently
different from each other by choosing various pairs to “cancel each other out”, and render the other
variables 0. Then use these solutions to form column vectors for the matrix A. Since the column
vectors always span the image of A, is we can show the three columns of A are linearly independent,
then they will form a basis of im(A).

Solution: We create one such set of solutions like in our strategy:

(i) x1 = 1, x2 = 2, x3 = 0, x4 = 0
(ii) x1 = 0, x2 = 3, x3 = 1, x4 = 0
(iii) x1 = 0, x2 = 0, x3 = 0, x4 = 1

.

We chose the last one since x4 is not in the equation. It follows that any set of values for the four
variables in which the first three are 0 and the last is not is automatically a solution.
We form the matrix A by writing each solution set above as a column and make these the columns of
A:

A =


1 0 0
2 3 0
0 1 0
0 0 1

 .

Then T (x) = Ax, and the columsn of A span A. To show that these columsn are linearly independent,
we can do one of two things: (1) declare that they are since each has a non-zero column element not
found in any of the other vectors (Tis is Theorem 3.2.5); Or (2), we can compute the row-reduced
echelon form:

rref(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 .

Here the rank of the matrix equals the number of columns. Thus the columsn are linearly independent.



4please show all work, explain your reasons, and state all theorems you appeal to

(c) Construct a linear transformation T : R4 → R, T (x) = Bx, where V = ker(B). Then
use B to construct a basis for ker(B). You will need to verify that what you have is a
basis.

Strategy: Like in class, we can simply use the dot product on vectors to construct the matrix B.
Once we have B, we put it in its row-reduced echelon form, and construct elements of the kernel as in
Theorem 3.3.8 from the text. And we can use the same criteria as in part (b) above to establish that we
indeed have a basis.

Solution: We use the dot product to construct the equation in a matrix form:

T (x) =


2
−1

3
0

 ·


x1

x2

x3

x4

 =
[

2 −1 3 0
] 

x1

x2

x3

x4

 = Bx.

Note that for the matrix B =
[

2 −1 3 0
]
, the redundant columns are the last three (why is this?).

We use this and Theorem 3.3.8 to construct elements in teh kernel of B: Express each redundant column
as a linear combination of all preceding columns and use it to generate a vector. Note that these “columns”
are really just 1-vectors.

Indeed, first we get x2 = − 1
2
x1. This generates the vector v1 =


1
2

1
0
0

.

Then, we get x3 = x1 − x2. This generates the vector v2 =


−1

1
1
0

.

Lastly, x4 cannot be written as a linear combination for the others (its coefficient is 0 in B). But this

immediately means that the vector v3 =


0
0
0
1

 ∈ ker(B).

I leave it to you to check that these vectors are linearly independent. Follow part (b) for guidance.
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Question 3. [15 points] For x =

[
x
y

]
, let T : R2 → R2, T (x) =

[
4 −2
−2 1

]
x be a linear

transformation. Do the following:

(a) Write this transformation as a composition of a scaling and an orthogonal projection.

Strategy: Use the form for an orthogonal projection to see whether there is a constant we can pull
out to render T an orthogonal projection. If so, then this constant is the scaling, which we write a s a
matrix.

Solution: The form for an orthogonal projection is given by

T : R2 → R2, T (x) = Ax, where A =

[
u2

1 u1u2

u1u2 u2
2

]
,

for some unit vector u =

[
u1

u2

]
in the image of T . The fact that u ∈ im(T ) means that u2

1 + u2
2 = 1

In our case, the matrix is in the right form for u1 = 2 and u2 = −1, but then u2
1 + u2

2 = 4 + 1 = 5 6= 1.
Hence T is NOT an orthogonal projection. However, we can write

T (x) =

[
4 −2
−2 1

]
x = 5

[
4
5
− 2

5

− 2
5

1
5

]
x.

Then, the right-hand-side of above is a constant multiple of a new matrix corresponding to a linear
transformation in the orthogonal projection format with u1 = 2√

5
and u2 = − 1√

5
. Then u2

1 + u2
2 =

4
5

+ 1
5

= 1. And since we can write any constant multiple as a scaling, we get

T (x) = 5

[
4
5
− 2

5

− 2
5

1
5

]
x =

[
5 0
0 5

] [
4
5
− 2

5

− 2
5

1
5

]
x.

(b) Find the equation of the line L = im(T ) and carefully draw L, x =

[
1
3

]
and

T

([
1
3

])
on the graph provided.

Solution: Above, we established that the

vector u =

[
2
−1

]
is in the image of T .

Hence we can immediately calculate the slope
of the line L containing u, as ∆y

∆x
= − 1

2
so

that the equation of the line L is y = − 1
2
x.

The vectors and L are graphed, with the line
in blue and the two vectors in red.
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Question 4. [25 points] Suppose we know for a linear transformation T of R2 that T

[
1
1

]
=

[
3
5

]
and T

[
−1

2

]
=

[
0
1

]
. Do the following:

(a) Find the matrix A so that T (x) = Ax.

Strategy: The columns of the matrix A are just the transformation’s effect on the standard vectors.
The vectors given are linear combinations of standard vectors. We use this to solve for the columns of
A.

Solution: The matrix A, relative to the standard basis, is given as A =

 | |
T (e1) T (e2)
| |

 . So

T

[
1
1

]
= T (e1 + e1) = T (e1) + T (e2) =

[
3
5

]
T

[
−1

2

]
= T (−e1 + 2e1) = −T (e1) + 2T (e2) =

[
0
1

]
.

We can solve this as a 2×2 system: Add the two last equations together to get 3T (e2) =

[
3
6

]
, so that

T (e2) =

[
1
2

]
. PLug this back into the first equation to get T (e1) =

[
2
3

]
. Then A =

[
2 1
3 2

]
.

(b) Given the basis B =

{[
1
−2

]
,

[
3
3

]}
, find the matrix B so that T [x]B = B [x]B .

Strategy: The short way to do this is to compute the change-of-basis matrix S using B. Then
AS = SB, or B = S−1AS.

Solution: Given B = {v1,v2}, we can write

S =

 | |
v1 v2

| |

 =

[
1 3
−2 3

]
.

Then S−1 = 1
9

[
3 −3
2 1

]
, so that

B = S−1AS =
1

9

[
3 −3
2 1

] [
2 1
3 2

] [
1 3
−2 3

]
=

1

9

[
3 −3
2 1

] [
0 9
−1 15

]
=

1

9

[
3 −18
−1 33

]
=

[
1
3
−2

− 1
9

11
3

]
.

(c) Find the B-coordinates of the vector x =

[
2
5

]
.

Solution: Since we know that S [x]B = x, and we know that S is invertible, we simply compute, using
part (b) above

[x]B = S−1x =
1

9

[
3 −3
2 1

] [
2
5

]
=

1

9

[
−9

9

]
=

[
−1

1

]
.

Of course, with a little inspection, you can also simply see that[
2
5

]
= −1 ·

[
1
−2

]
+ 1 ·

[
3
3

]
.

Hence the coordinates are [x]B =

[
−1

1

]
.


