LINEAR ALGEBRA (MATH 110.201)

MIDTERM I

Name: \qquad

Section number/TA:

Instructions:

(1) Do not open this packet until instructed to do so.
(2) This midterm should be completed in $\mathbf{5 0}$ minutes.
(3) Notes, the textbook, and digital devices are not permitted.
(4) Discussion or collaboration is not permitted.
(5) All solutions must be written on the pages of this booklet.
(6) Justify your answers, and write clearly; points will be subtracted otherwise.

Exercise	Points	Your score
1	5	
2	5	
3	5	
4	5	
5	5	

Exercise 1 (5 points) Let a, b be fixed real numbers. Consider the following system of equations:

$$
\begin{aligned}
X+Y & =a \\
X+2 Y+Z & =b \\
X+3 Y+2 Z & =0
\end{aligned}
$$

Determine all possible values of a, b for which the above system has a solution. When the system has a solution, describe all solutions in terms of a and b.

Solution:

Solution (continued):

Exercise 2 (5 points) Suppose that $T, U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are linear transformations. Let c be a fixed real scalar. Consider the function $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $H(x)=c T(x)+U(x)$. Explain why H is a linear transformation. How does the matrix of H relate to the matrices of T and U ?

Solution:

Solution (continued):

Exercise 3 (5 points) Let $w=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, and let \mathcal{L} be the line in \mathbb{R}^{3} passing through the origin and w. Let $\operatorname{Proj}_{\mathcal{L}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function that sends a vector x to its orthogonal projection onto \mathcal{L}.
(1) By definition, $\operatorname{Proj}_{\mathcal{L}}(x)=k w$ for some scalar k; express this scalar in terms of x and w.
(2) Prove, using your answer from (1), that $\operatorname{Proj}_{\mathcal{L}}$ is a linear transformation.
(3) Write down the matrix of $\operatorname{Proj}_{\mathcal{L}}$.

Solution:

Solution (continued):

Exercise 4 (5 points) Let a and b denote real numbers, with $a \neq 0$. Determine whether the following matrix is invertible, and write down A^{-1} if it is.

$$
A=\left[\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a
\end{array}\right]
$$

Double-check that your answer is correct when $a=1$ and $b=1$.

Solution:

Solution (continued):

Exercise 5 (5 points) Let A be an $n \times n$ matrix. Recall that

$$
\operatorname{ker}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0_{n}\right\}
$$

where 0_{n} is the vector in \mathbb{R}^{n} having all 0 's as coordinates. Show that if $x \in \operatorname{ker}(A)$, then $x \in \operatorname{ker}\left(A^{2}\right)$ (where $A^{2}=A \cdot A$ is the matrix product of A with itself).

Solution:

Solution (continued):

