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1. 10 points. Solve the system
x + 2y + 3z = 1

4x + 5y + 9z = 1

7x + 8y + 15z = 1

Determine the rank of the coefficient matrix.
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2. 10 points. True or false. Justify your answer.

(a) There exists a 2× 2 matrix A such that A

(
1 1
1 1

)
=

(
2 1
1 2

)
.

(b) There is a 2× 3 matrix A of rank 2 such that A

 1
1
0

 =

(
0
0

)
.
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3. 20 points.

(a) Consider the linear transformation T : R3 → R3.

T

 x
y
z

 =

 x + y
y + z
x + z


Show that T is an invertible linear transformation. Compute the matrix for T−1.
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(b) Let L = {t~e1|t ∈ R} be the line in R3 spanned by ~e1 =

 1
0
0

. Find the matrix of the

transformation projL ◦ T : R3 → R3, where T is the linear transformation in part (a) and
projL ◦ T (~x) = projL(T (~x)).
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(c) Describe the kernel and image of the transformation in part (b) in terms of a span of vectors in
R3. Use as few vectors as possible.

(d) Consider the column vectors of the matrix in part (b). Are they linearly independent? If not,
find out all possible linear dependency relations among them.
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4. 10 points. True or False. Justify your answer.

(a) There exists an invertible n× n matrix with two identical columns.

(b) There exists a 2× 3 matrix A and a 3× 2 matrix B such that BA = I3.
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