LINEAR ALGEBRA Firit Miiderm Gxam

JOHNS HOPKINS UNIVERSITY SPRING 2OI 3

You have 50 minutes.
No calculators, books or notes allowed.

Academic Honesty Certificate. I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature: \qquad Date: \qquad

Name: \qquad Section № ${ }^{\text {: }}$ \qquad
(or TA's name)

Question	Score
I	
2	
3	
4	
5 (bonus)	

(1) (a) [15 points] Find all solutions to the system of equations:

$$
\left\{\begin{array}{c}
x+y+6 z=8 \\
2 x+3 y+16 z=21
\end{array}\right.
$$

using Gaussian elimination. Is the system consistent? Why?
(b) [10 points] Does the system of equations:

$$
\left\{\begin{aligned}
2 x+12 z & =14 \\
2 y+16 z & =18 \\
x+2 y+22 z & =25
\end{aligned}\right.
$$

have a unique solution? Justify your answer.
(2) $[25$ points $]$ Let:

$$
\mathrm{A}=\left[\begin{array}{rrrc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 5 \\
1 & 1 & 1 & 15
\end{array}\right]
$$

Can an equation:

$$
\mathrm{A} \vec{x}=\vec{b}
$$

have infinitely many solutions while another equation:

$$
\mathrm{A} \vec{x}=\vec{c}
$$

has none whatsoever? If no, explain why not. If yes, find vectors \vec{b} and \vec{c} in \mathbf{R}^{4} for which this is true.
(3) (a) $[5$ points $]$ Compute the matrix products BA and AB where:

$$
\mathrm{A}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(b) [10 points] Does the matrix A above have an inverse? If yes, compute it. If no, why not?
(3) (c) [10 points] Write down the matrix for the following linear transformation. (The origin is at the center of each drawing.) Explain how you reached your answer.

(4) (a) [5 points] What does it mean to say that vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent?
(b) [5 points] Are these vectors linearly independent? Justify your answer using determinants.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

(4) (c) [15 points] What is the dimension of the space spanned by the following vectors? Explain your approach and show your work.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2 \\
2
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
2 \\
1
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right] \quad \vec{v}_{4}=\left[\begin{array}{r}
1 \\
-1 \\
3 \\
2 \\
3
\end{array}\right]
$$

(5) [20 bonus points] Find a basis for the image of the linear transformation:

$$
\mathrm{A}=\left[\begin{array}{llll}
a & a & b & a \\
a & a & b & 0 \\
a & b & a & b \\
a & b & a & 0
\end{array}\right]
$$

for any real numbers a and b.
[Hint: The special cases $(a, b)=(0,0)$ and $(a, b)=(0,1)$ immediately show that the number of basis vectors will depend on the values a and b take, so carry out as much row reduction as possible without dividing by possibly vanishing numbers and break into cases at the last step.]

