LINEAR ALGEBRA Firjt Midterm Gram

JOHNS HOPKINS UNIVERSITY SPRING 2013

You have **50 MINUTES**. No calculators, books or notes allowed.

Academic Honesty Certificate. I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature:	Date:
Name:	Section Nº: (or TA's name)

Question	Score	
I		
2		
3		
4		
5 (bonus)		

(1) (a) [15 points] Find all solutions to the system of equations:

$$\begin{cases} x + y + 6z = 8 \\ 2x + 3y + 16z = 21 \end{cases}$$

using Gaussian elimination. Is the system consistent? Why?

(b) [10 points] Does the system of equations:

	2x	+			12 <i>z</i>	=	14
{			2y	+	16z	=	18
	x	+	2y	+	22 <i>z</i>	=	25

have a unique solution? Justify your answer.

(2) [25 points] Let:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 5 \\ 1 & 1 & 1 & 15 \end{bmatrix}$$

Can an equation:

 $A\vec{x} = \vec{b}$

have infinitely many solutions while another equation:

$$A\vec{x} = \vec{c}$$

has none whatsoever? If no, explain why not. If yes, find vectors \vec{b} and \vec{c} in \mathbf{R}^4 for which this is true.

(3) (a) [5 points] Compute the matrix products BA and AB where:

	0	1	1]		0	1	1]
A =	1	0	0	B =	1	0	1
	0	1	0	B =	[1	1	0

(b) [10 points] Does the matrix A above have an inverse? If yes, compute it. If no, why not?

(3) (c) [10 points] Write down the matrix for the following linear transformation. (The origin is at the center of each drawing.) Explain how you reached your answer.

(4) (a) [5 points] What does it mean to say that vectors $\vec{v}_1, \ldots, \vec{v}_n$ are *linearly independent*?

(b) [5 points] Are these vectors linearly independent? Justify your answer using determinants.

$$\vec{v}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$
 $\vec{v}_2 = \begin{bmatrix} 2\\ 3 \end{bmatrix}$

(4) (c) [15 points] What is the dimension of the space spanned by the following vectors? Explain your approach and show your work.

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\2\\2\\2\\2 \end{bmatrix} \qquad \qquad \vec{v}_2 = \begin{bmatrix} 1\\1\\1\\2\\1 \end{bmatrix} \qquad \qquad \vec{v}_3 = \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix} \qquad \qquad \vec{v}_4 = \begin{bmatrix} 1\\-1\\3\\2\\3 \end{bmatrix}$$

(5) [20 bonus points] Find a basis for the image of the linear transformation:

$$\mathbf{A} = \begin{bmatrix} a & a & b & a \\ a & a & b & 0 \\ a & b & a & b \\ a & b & a & 0 \end{bmatrix}$$

for any real numbers *a* and *b*.

[Hint: The special cases (a,b) = (0,0) and (a,b) = (0,1) immediately show that the number of basis vectors will depend on the values a and b take, so carry out as much row reduction as possible without dividing by possibly vanishing numbers and break into cases at the last step.]