LINEAR ALGEBRA (MATH 110.201)

MIDTERM I - 26 FEBRUARY 2016

Name: ____

Section number/TA: _____

Instructions:

- (1) Do not open this packet until instructed to do so.
- (2) This midterm should be completed in **50 minutes**.
- (3) Notes, the textbook, and digital devices are not permitted.
- (4) Discussion or collaboration is **not permitted**.
- (5) All solutions must be written on the pages of this booklet.
- (6) Justify your answers, and write clearly; points will be subtracted otherwise.
- (7) Once you submit your exam, you will not be allowed to modify it.
- (8) By submitting this exam, you are agreeing to the above terms. Cheating or refusing to stop writing when time is called may result in an automatic failure.

Exercise	Points	Your score
1	12	
2	12	
3	12	
4	12	
5	16	
6	12	
7	12	
8	12	
Total	100	

Exercise 1. Consider the following system of equations, where λ is a real number:

$$1W + 2X + 3Y + 4Z = 1$$

$$5W + 6X + 7Y + 8Z = \lambda$$

$$9W + 10X + 11Y + 12Z = \lambda^2$$

- (1) (4 points) Write down the augmented matrix of this system.
- (2) (8 points) For which real numbers λ does this system have at least one solution? When it has at least one solution, describe all solutions.

Exercise 2. Consider the following vectors in \mathbb{R}^3 :

$$\vec{x} = \begin{bmatrix} -1\\2\\-3 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$$

(1) (4 points) Calculate $||\vec{x}||$ and $||\vec{y}||$.

- (2) (4 points) Calculate the distance between \vec{x} and \vec{y} . (3) (4 points) Are \vec{x} and \vec{y} perpendicular to each other?

Exercise 3. (12 points) Find all vectors in \mathbb{R}^3 which are simultaneously perpendicular to both of the following vectors:

$$\vec{v} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2\\ 5\\ -1 \end{bmatrix}$

Exercise 4. Decide whether the following functions are linear transformations. If they are linear transformations, write down their matrices. If not, justify why not.

(1) (6 points) $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}2x+1\\3y-1\end{bmatrix}$$

(2) (6 points) $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}2x - 3y\\7y + 2x\\3x - y\end{bmatrix}$$

Exercise 5. Consider $\operatorname{Rot}_{\pi/4} : \mathbb{R}^2 \to \mathbb{R}^2$ counter-clockwise rotation by 45 degrees, and $\operatorname{Ref}_{\mathscr{L}}$ reflection over the line \mathscr{L} passing through the origin and $\begin{bmatrix} 1\\ 2 \end{bmatrix}$.

(1) (8 points) Write down the matrices of $\operatorname{Rot}_{\pi/4}$ and $\operatorname{Ref}_{\mathscr{L}}$.

- (2) (4 points) Write down the matrix of $\operatorname{Rot}_{\pi/4} \circ \operatorname{Ref}_{\mathscr{L}}$.
- (3) (4 points) Write down the matrix of $\operatorname{Ref}_{\mathscr{L}} \circ \operatorname{Rot}_{\pi/4}$.

Exercise 6. Consider the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- (1) (8 points) Find two different 3×2 matrices C with the property that $AC = I_2$. (2) (4 points) Is it possible to find a 3×2 matrix B with the property that $BA = I_3$?

Exercise 7. (12 points) Is the following matrix invertible?

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

If so, write down A^{-1} .

Exercise 8. (12 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Is the vector $\vec{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in $\operatorname{Im}(A)$?