NAME:
SECTION \# OR TA'S NAME:

LINEAR ALGEBRA - SECOND MIDTERM EXAM - NOVEMBER 28, 2001

Please attempt all the problems and show all your work. Don't hesitate to ask me for clarification on any questions you may have. You may not use any notes, books or calculators.

1. (25 points) Find the characteristic polynomial and all eigenvalues and eigenvectors of the matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

2. (25 points) Find the least squares line best fitting the following data: $(0,1),(1,2)$, and $(-1,-3)$.

3 . Answer the following questions true or false (5 points each):
(i) For any $n \times n$ matrix $A, \operatorname{det}(A)=\operatorname{det}(\operatorname{rref}(A))$.
(ii) $\operatorname{det}\left(\begin{array}{lllll}2 & 1 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 2 \\ 5 & 3 & 0 & 1 & 9 \\ 7 & 4 & 0 & 0 & 4 \\ 9 & 5 & 3 & 4 & 1\end{array}\right)=3$.
(iii) For any $m \times n$ matrix $A, \operatorname{ker}(A)=\operatorname{ker}\left(A^{T} A\right)$.

4 . Answer the following (5 points each):
(i) Give an example of an orthogonal 3×3 matrix other than the identity.
(ii) Is it possible to find an example of a skew-symmetric invertible 3×3 matrix? Explain.

5 . (25 points) Consider the vector space of continuous functions on $[0,1]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find the orthogonal projection of the function $h(x)=x^{2}$ onto the subspace spanned by $\{1, x\}$.
(this page left blank)

