## LINEAR ALGEBRA - SECOND MIDTERM EXAM SOLUTIONS

1. The characteristic polynomial is:

$$
p_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
\lambda-1 & -1 & 0 \\
0 & \lambda-1 & -1 \\
0 & 0 & \lambda-2
\end{array}\right)=(\lambda-1)^{2}(\lambda-2) .
$$

So the eigenvalues of $A$ are 1 and 2. The eigenspaces are:

$$
\begin{aligned}
& E_{1}=\operatorname{ker}\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}, \\
& E_{2}=\operatorname{ker}\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} .
\end{aligned}
$$

2. We look for a line $y=m x+b$, where the data points correspond to $(x, y)$. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-1 & 1
\end{array}\right) \quad \vec{y}=\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right)
$$

Then the least squares solution is the vector $\binom{m}{b}$ satisying:

$$
\begin{gathered}
A^{T} A\binom{m}{b}=A^{T} \vec{y} \\
A^{T} A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
A^{T} \vec{y}=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right)=\binom{5}{0}
\end{gathered}
$$

It is easy to see that $\binom{m}{b}=\binom{5 / 2}{0}$. The equation of the least squares line is therefore:

$$
y=\frac{5}{2} x .
$$

3. (i) False. For example, if $A$ is an invertible $n \times n$ matrix, $\operatorname{rref}(A)=I_{n}$, so $\operatorname{det}(\operatorname{rref}(A))=$ 1. But $\operatorname{det}(A)$ need not be 1 .

$$
\begin{aligned}
& \text { (ii) True.' } \\
& \text { (iii) True. Since } \\
& \|A x\|^{2}=\left\langle x, A^{T} A x\right\rangle, \quad=3(8-1)=3 \\
& =3(2 \cdot(3 \cdot 4-4 \cdot 2)+7(1 \cdot 2-3 \cdot 1))
\end{aligned}
$$

if $x$ is in the kernel of $A^{T} A$, then the right hand side is zero, so $A x=0$. Conversely, if $x$ is in the kernel of $A$, it is also in the kernel of $A^{T} A$.
4. (i) Just choose any orthonormal basis as column vectors, e.g.

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(ii) No. For if $A$ is $3 \times 3$ and skew-symmetric,

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)=(-1)^{3} \operatorname{det}(A)=-\operatorname{det}(A)
$$

so $\operatorname{det}(A)=0 ; A$ cannot be invertible.
5. First find an orthonormal basis for the span of $\{1, x\}$. The function $w_{1}=1$ has unit length. Now

$$
\begin{array}{ll}
\langle x, 1\rangle=\int_{0}^{1} x d x=\frac{1}{2}, & P_{l}=\text { projection of X unto! } \\
= & \left\langle x_{1} \mid\right\rangle 1=1 / 2
\end{array}
$$

and

$$
\left.\|x-1 / 2\|^{2}=\int_{0}^{1}(x-1 / 2)^{2} d x=\frac{1}{3}(x-1 / 2)^{3}\right]_{0}^{1}=\frac{1}{12} . \quad W_{2}=\frac{x-\mid / 2}{\| x-1 / 2 \mid}
$$

So if we let $w_{2}=2 \sqrt{3}(x-1 / 2)$, then $\left\{w_{1}, w_{2}\right\}$ is an orthonormal set. Then the projection of $h$ is given by:

$$
\operatorname{proj}(h)=\left\langle h, w_{1}\right\rangle w_{1}+\left\langle h, w_{2}\right\rangle w_{2}
$$

We compute:

$$
\begin{gathered}
\left\langle x^{2}, 1\right\rangle=\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
\left.\left\langle x^{2}, w_{2}\right\rangle=2 \sqrt{3} \int_{0}^{1} x^{2}(x-1 / 2) d x=2 \sqrt{3}\left(\frac{x^{4}}{4}-\frac{x^{3}}{6}\right)\right]_{0}^{1}=\frac{\sqrt{3}}{6}
\end{gathered}
$$

So

$$
\operatorname{proj}(h)=\frac{1}{3} \cdot 1+\frac{\sqrt{3}}{6} \cdot 2 \sqrt{3}(x-1 / 2)=x-\frac{1}{6} .
$$

