LINEAR ALGEBRA - SECOND MIDTERM EXAM SOLUTIONS

1 . The characteristic polynomial is:
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So the eigenvalues of A are 1 and 2. The eigenspaces are:
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2 . We look for a line y = mx 4 b, where the data points correspond to (z,y). Let
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Then the least squares solution is the vector ( ) satisying:
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) = ( (/) ) The equation of the least squares line is therefore:
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It is easy to see that < b

Y= =T.

3 . (i) False. For example, if A is an invertible nxn matrix, rref(A) = I,,, so det(rref(A)) =
1. But det(A) need not be 1.



(iii)
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if 2 is in the kernel of AT A, then the right hand side is zero, so Az = 0. Conversely,
if 2 is in the kernel of A, it is also in the kernel of AT A.

. (i) Just choose any orthonormal basis as column vectors, e.g.
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No. For if A is 3 x 3 and skew-symmetric,
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det(A) = det(AT) = det(—A) = (—1)3det(A) = —det(A) ,

so det(A) = 0; A cannot be invertible.

. First find an orthonormal basis for the span of {1,z}. The function w; = 1 has unit

length. Now R—}? rJ\)Mlm%XU\n&D IL
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So if we let wy = 2v/3(x — 1/2), then {w;,ws} is an orthonormal set. Then the
projection of h is given by:

proj(h) = (h, w1)wy + (h, wa)ws .

We compute:

1
(x2,1) :/ r?dr = E .
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(22, wy) = 2\/3/01 2 (x —1/2)dx = 2V/3 (%4 — %S)I = ? .

So

proj(h):%-1+§-2\/§(m—1/2):x—é.



