April 1, 2009

Name						٠			
Section/ Name of your TA.									

MIDTERM EXAM 2 100pts. MATH 201 VER ****

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- Read all the questions carefully and make sure you answer all the parts.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
- (1)/22
- (2)/20
- $(3) \ldots (22)$
- $(4) \ldots /36$

Total/100

Í

(1) 22 pts. Let
$$A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 0 & 0 \\ 4 & 1 & 0 \end{bmatrix}$$
.

(a) Find the determinant of A . Show work

(b) Find the classical adjoint of A. Show work

(c) What is the inverse of A? Show work.

- (2) 20 pts. Let \mathcal{P}_1 be the set of polynomials with degree less than or equal to 1, that is, $\mathcal{P}_1 = \{f(t) = a_0 + a_1t : a_0, a_1 \in \mathbb{R}\}$. Then both $\mathcal{B}_1 = \{1, t\}$ and $\mathcal{B}_2\{1, t-1\}$ are bases of \mathcal{P}_1 .
 - (a) What is the S matrix that transforms a vector in \mathcal{B}_2 -coordinates into \mathcal{B}_1 -coordinates. Show work

(b) Let $T: \mathcal{P}_1 \to \mathcal{P}_1$ be the transformation defined as $T(a_0 + a_1 t) = a_0 + a_1(2t - 1)$. Find the matrix B of the transformation T with respect to the basis \mathcal{B}_2 . Show work.

(c) Let $f \in \mathcal{P}_1$ be written as $[f]_{\mathcal{B}_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in \mathcal{B}_2 -coordinates. Let T be as in part (b), then find $[T(f)]_{\mathcal{B}_1}$, that is, find T(f) in \mathcal{B}_1 -coordinates. Show work.

(3) 22pts. (a) Let $\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ -1 \end{bmatrix} \right\}$ be two different sets in \mathbb{R}^4 spanning the same subspace. Which of these two sets are orthogonal? Show work.

4

(b) Let
$$\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 be a basis of a subspace V of \mathbb{R}^4 . Find an orthonormal basis of V . Show work.

		•	
		And	

(4) 36 pts. These are all short answer questions. Explain your answer. Each of these problems is worth 12 points.

problems is worth 12 points.

(a) Let
$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 6$$
. Find $\det \begin{bmatrix} a-d & b-e & c-f \\ g & h & i \\ 4d & 4e & 4f \end{bmatrix}$. Explain your answer.

(b) The space of polynomials of degree less than or equal to 1, \mathcal{P}_1 is isomorphic to the space of complex numbers $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$. State true or false. Give reasons.

	2000 CONTRACTOR CONTRA
	PETERSON SERVICE SERVI

- (c) Find the volume of the parallelepiped which has the vectors $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ as three edges. Show work and explain your answer.