MATH 201 MIDTERM II SPRING 11

1. (a) $T: P_2 \to P_2$ be the linear transformation defined by T(f) = f + f''. Let $\mathcal{S} = (1, x, x^2)$ be the standard basis for P_2 . Find the *S*-matrix A for T.

(b) Let $\mathcal{B} = (1 + x, x + x^2, 1 + x^2)$ be another basis for P_2 . Let B be the \mathcal{B} -matrix for the linear transformation T. Find the invertible matrix S such that $B = S^{-1}AS$.

2. True or False. Justify your answer.

(a) There exists an invertible 2×2 matrix S such that $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = S^{-1} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} S$. (b) If $\mathbf{v}_1, \mathbf{v}_2$ is a basis for \mathbf{R}^2 . then $T(\mathbf{v}_1), T(\mathbf{v}_1)$ is a basis for \mathbf{R}^2 for any linear transformation $T : \mathbf{R}^2 \to \mathbf{R}^2$.

3. Find an orthonormal basis for $\operatorname{Ker}(\operatorname{Proj}_V)$ where $\operatorname{Proj}_V : \mathbf{R}^4 \to \mathbf{R}^4$ is the orthogonal projection onto the subspace $V = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix}$.

- 4. True or False. Justify your answer.
 - (a) If A and S are orthogonal matrices, then $S^{-1}AS$ is orthogonal as well.
 - (b) Let A and B be two 2×2 matrices. If BA is orthogonal then A and B are orthogonal.
- 5. Find the least squares solution to the system $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Find the orthogonal projection of \mathbf{b} onto the subspace Im A.