Math 201 Midterm II Spring 11

1. (a) $T: P_{2} \rightarrow P_{2}$ be the linear transformation defined by $T(f)=f+f^{\prime \prime}$. Let $\mathcal{S}=\left(1, x, x^{2}\right)$ be the standard basis for P_{2}. Find the \mathcal{S}-matrix A for T.
(b) Let $\mathcal{B}=\left(1+x, x+x^{2}, 1+x^{2}\right)$ be another basis for P_{2}. Let B be the \mathcal{B}-matrix for the linear transformation T. Find the invertible matrix S such that $B=S^{-1} A S$.
2. True or False. Justify your answer.
(a) There exists an invertible 2×2 matrix S such that $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=S^{-1}\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] S$.
(b) If $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for \mathbf{R}^{2}. then $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{1}\right)$ is a basis for \mathbf{R}^{2} for any linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.
3. Find an orthonormal basis for $\operatorname{Ker}\left(\operatorname{Proj}_{V}\right)$ where $\operatorname{Proj}_{V}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ is the orthogonal projection onto the subspace $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right]$.
4. True or False. Justify your answer.
(a) If A and S are orthogonal matrices, then $S^{-1} A S$ is orthogonal as well.
(b) Let A and B be two 2×2 matrices. If $B A$ is orthogonal then A and B are orthogonal.
5. Find the least squares solution to the system $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Find the orthogonal projection of \mathbf{b} onto the subspace $\operatorname{Im} A$.
