Solutions to Math 201 Midterm II Spring 11

1. (a) T maps

Since

$$
\begin{aligned}
& T(1)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2}, \\
& T(x)=x=0 \cdot 1+1: x+0 \cdot x^{2}, \\
& T\left(x^{2}\right)=x^{2}+2=2 \cdot 1+0 \cdot x+1 \cdot x^{2},
\end{aligned}
$$

we have

$$
A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad A\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],
$$

which gives the three columns of A so $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) Next we want to find the expression for T in the new basis

$$
\begin{array}{cl}
a_{1} \cdot(1+x)+a_{2} \cdot\left(x+x^{2}\right)+a_{3} \cdot\left(1+x^{2}\right) & \xrightarrow{T} b_{1} \cdot(1+x)+b_{2} \cdot\left(x+x^{2}\right)+b_{3} \cdot\left(1+x^{2}\right) \\
\\
\downarrow \\
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]} & \xrightarrow{\text { multiply by } B}
\end{array}
$$

Since we already know the matrix for B in the standard coordinates the easiest way to get B is to change coordinates

$$
a_{1} \cdot(1+x)+a_{2} \cdot\left(x+x^{2}\right)+a_{3} \cdot\left(1+x^{2}\right)=c_{1} \cdot 1+c_{2} \cdot x+c_{3} \cdot x^{2}
$$

Since the new coordinates already are expressed in terms of the old ones, the easiest way is to get the matrix S from the new coordinates to the old ones $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=S\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$. We get

$$
S\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad S\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad S\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \text { so } \quad S=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Multiplication B corresponds to $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \xrightarrow{\text { multiply by } S}\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right] \xrightarrow{\text { multiply by } A}\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right] \xrightarrow{\text { multiply by } S^{-1}}\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ so $B=S^{-1} A S=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\ldots$. For more info see Ex 5 , Ex 8 in sec 4.3 .
2. (a) FALSE. Similar matrices have the same determinant: $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=-3$ whereas $\operatorname{det}\left(S^{-1}\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] S\right)=\operatorname{det} S^{-1} \operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] \operatorname{det} S=\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]=0$, since $\operatorname{det} S^{-1} \operatorname{det} S=\operatorname{det} S^{-1} S=1$.
(b) FALSE. T can be a linear transformation of rank 0 or 1 .
3. The kernel of the orthogonal projection onto V is the orthogonal complement of V, i.e. $V^{\perp}=\{\mathbf{x} ; \mathbf{x} \cdot \mathbf{v}=0$, for every $\mathbf{v} \in V\}$. Since $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right]$, it follows that $V^{\perp}=\left\{\mathbf{x} ; \mathbf{x} \cdot \mathbf{v}_{1}=0\right.$, and $\left.\mathbf{x} \cdot \mathbf{v}_{2}=0\right\}=\operatorname{Ker} A$, where $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2\end{array}\right]$. Solving the system $A \mathbf{x}=\mathbf{0}$ gives $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}2 x_{4}-x_{3} \\ -2 x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}2 \\ -2 \\ 0 \\ 1\end{array}\right]$, where x_{3}, x_{4} are free. It follows that $\mathbf{w}_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{c}2 \\ -2 \\ 0 \\ 1\end{array}\right]$ form a basis for $\operatorname{Ker}\left(\operatorname{Proj}_{V}\right)$.
We want to use Gram-Schmidt to construct and orthonormal basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ from $\mathbf{w}_{1}, \mathbf{w}_{2}$. First we get an orthonormal vector $\mathbf{u}_{1}=\mathbf{w}_{1} /\left\|\mathbf{w}_{1}\right\|=\left[\begin{array}{c}-1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2} \\ 0\end{array}\right]$. Then we calculate the orthogonal projection of \mathbf{w}_{2} onto the span of \mathbf{u}_{1} to be $\mathbf{p}_{1}=\left(\mathbf{w}_{2} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}=-2\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$. $\mathbf{w}_{2}-\mathbf{p}_{1}$ is now orthogonal to \mathbf{u}_{1} so we just have to normalize it $\mathbf{u}_{2}=\left(\mathbf{w}_{2}-\mathbf{p}_{1}\right) /\left\|\mathbf{w}_{2}-\mathbf{p}_{1}\right\|=\ldots$
4. (a) TRUE. A matrix Q is called orthogonal if $Q^{T} Q=I$ and the transpose of a product satisfy $(A B)^{T}=A^{T} B^{T}$. Inverses of orthogonal matrices are orthogonal. In fact $S^{-1}=S^{T}$. Product of orthogonal matrices are orthogonal. In fact, $\left(S^{-1} A S\right)^{T}=S^{T} A^{T}\left(S^{-1}\right)^{T}$ so $\left(S^{-1} A S\right)^{T} S^{-1} A S=S^{T} A^{T}\left(S^{-1}\right)^{T} S^{-1} A S=S^{T} A^{T} I A S=S^{T} S=I$.
(b) FALSE. A is scaling by $2, B$ is scaling by $1 / 2$. Then $B A$ is the identity transformation.
5. The so called least squares 'solution' to the system $A \mathbf{x}=\mathbf{b}$ is only an approximate solution to this system but instead it is the solution to the normal equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$, where $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. The normal equation is $\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 8\end{array}\right]$ so $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ 8 / 5\end{array}\right]$. The orthogonal projection of \mathbf{b} onto the subspace $\operatorname{Im} A$ is $A \mathbf{x}=\left[\begin{array}{c}1 \\ 8 / 5 \\ 16 / 5\end{array}\right]$, because the least square 'solution' is the \mathbf{x} that makes $A \mathbf{x}$ as close as possible to \mathbf{b} and that is the orthogonal projection of \mathbf{b} onto the image of A.

For more info see Ex 1 in sec 5.4.

