LINEAR ALGEBRA SECOND MIDTERM EXAM DON'T PANICI

JOHNS HOPKINS UNIVERSITY SPRING 2013

You have 50 minutes.
No calculators, books or notes allowed.

Academic Honesty Certificate. I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature: \qquad Date: \qquad

Name: \qquad Section №: \qquad
(or TA's name)

Question	Score
I	
2	
3	
4	
5 (bonus)	

(1) Consider the linear transformation $\mathbf{R}^{5} \rightarrow \mathbf{R}^{4}$ with matrix $\mathrm{A}=\left[\begin{array}{rrrrr}1 & 0 & 1 & 1 & 2 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2\end{array}\right]$.
(a) [10 points] Determine a basis for the image of A.
(b) [10 points] Determine a basis for the kernel of A.
(c) [5 points] For which real numbers r (if any) does the equation $A \vec{x}=\left[\begin{array}{l}r \\ 0 \\ 0 \\ 1\end{array}\right]$ have a solution \vec{x} ?
(2) (a) $[12$ points] Indicate which properties the given vectors have by writing Yes or No in each square. (Show your work in the margins or below the table.)

	linearly independent	(pairwise) orthogonal	orthonormal
$\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -5\end{array}\right]$ in \mathbf{R}^{3}			
$\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right],\left[\begin{array}{r}4 / 5 \\ -3 / 5\end{array}\right]$ in \mathbf{R}^{2}			
$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -1 \\ -1\end{array}\right]$ in \mathbf{R}^{4}			
$(x-1),(x-1)^{2}$,			
$(x-1)(x+1)$ in P_{2}			

(b) [13 points] Compute the inverse of the following matrix. Justify your answer.
[Hint: Intellect © romance triumph over brute force © cynicism.]

$$
\mathrm{C}=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1
\end{array}\right]
$$

(3) Consider the linear transformation $\mathrm{T}: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}^{2 \times 2}$ given by the formula:

$$
\mathrm{T}(M)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] M-M\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

(a) $[20$ points $]$ Find the matrix B for T with respect to the basis:

$$
\mathfrak{B}=\left(\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)
$$

(b) [5 points] Determine the dimension of the space of 2×2 matrices M such that $\mathrm{T}(M)=0$.
(4) (a) [12 points] Orthonormalize-that is apply the Gram-Schmidt process to-these vectors in \mathbf{R}^{4} :

$$
\vec{v}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{r}
-1 \\
3 \\
1 \\
-3
\end{array}\right]
$$

(b) [13 points] Compute the 4×4 matrix (with respect to the standard basis) for the orthogonal projection onto the plane spanned by the vectors \vec{v}_{1} and \vec{v}_{2} above.
(5) [1 bonus point] This letter appears often in the textbook. Which letter of the alphabet is it?

[Hint: It's not the number $\mathbf{2 1}$-half the number $\mathbf{4 2}$.]

