

JOHNS HOPKINS UNIVERSITY SPRING 2013

You have **50 MINUTES**. No calculators, books or notes allowed.

Academic Honesty Certificate. I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature:	Date:

Name: ____

Section N^o: _____ (or TA's name)

Question	Score
I	
2	
3	
4	
5 (bonus)	

	[1	0	1	1	2]	
(1) $C_{1} = \frac{1}{2} + $	-1	1	1	0	0	
(1) Consider the linear transformation $\mathbf{K}^{\circ} \to \mathbf{K}^{\circ}$ with matrix $\mathbf{A} =$			1	1	1	·
 (1) Consider the linear transformation R⁵ → R⁴ with matrix A = (a) [10 points] Determine a basis for the image of A. 	1	0	1	1	2	

(b) [10 points] Determine a basis for the kernel of A.

(c) [5 points] For which real numbers *r* (if any) does the equation $A\vec{x} = \begin{bmatrix} r \\ 0 \\ 0 \\ 1 \end{bmatrix}$ have a solution \vec{x} ?

(2)	(a)	[12 points] Indicate which properties the given vectors have by writing Yes or No in each square.
		(Show your work in the margins or below the table.)

	linearly independent	(pairwise) orthogonal	orthonormal
$\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-5 \end{bmatrix} \text{ in } \mathbf{R}^3$			
$\begin{bmatrix} 3/5\\4/5\end{bmatrix}, \begin{bmatrix} 4/5\\-3/5\end{bmatrix} \text{ in } \mathbf{R}^2$			
$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\-1\\-1 \end{bmatrix} \text{ in } \mathbf{R}^4$			
$(x-1), (x-1)^2,$ (x-1)(x+1) in P ₂			

(b) [13 points] Compute the inverse of the following matrix. Justify your answer. [Hint: Intellect & romance triumph over brute force & cynicism.]

(3) Consider the linear transformation $T: {I\!\!R}^{2\times 2} \to {I\!\!R}^{2\times 2}$ given by the formula:

$$\mathbf{T}(M) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} M - M \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(a) [20 points] Find the matrix B for T with respect to the basis:

$$\mathfrak{B} = \left(\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right)$$

(b) [5 points] Determine the dimension of the space of 2×2 matrices M such that T(M) = 0.

(4) (a) [12 points] Orthonormalize—that is apply the Gram-Schmidt process to—these vectors in \mathbf{R}^4 :

	$\left\lceil -1 \right\rceil$		$\begin{bmatrix} -1 \end{bmatrix}$
→	1	=	3
$v_1 \equiv$	1	$v_2 =$	1
$\vec{v}_1 =$	$\lfloor -1 \rfloor$		$\begin{bmatrix} -1\\ 3\\ 1\\ -3 \end{bmatrix}$

(b) [13 points] Compute the 4×4 matrix (with respect to the standard basis) for the orthogonal projection onto the plane spanned by the vectors \vec{v}_1 and \vec{v}_2 above.

(5) [1 bonus point] This letter appears often in the textbook. Which letter of the alphabet is it?

[Hint: It's not the number **21**—half the number **42**.]