These are sketches of solutions just to check that you got the answers right.

- The reduced row echelon form of the given matrix is

$$
\operatorname{rref}(A)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \tag{1}\\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Thus the first three columns are pivot columns and as a basis one can take the first three columns.

- Using the reduced row echelon form above and solving for the pivot variables in terms of the free variables we see that the basis is given by the equations $x_{1}=-x_{4}-x_{5}, x_{2}=-x_{4}, x_{3}=-x_{5}$, so the kernel is given by

$$
\left\{\left(\begin{array}{c}
-x_{4}-x_{5} \\
-x_{4} \\
-x_{5} \\
x_{4} \\
x_{5}
\end{array}\right): x_{4}, x_{5} \in \mathbb{R}\right\}=\operatorname{span}\left(\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right)\right)
$$

and the vectors in this span are linearly independent, therefore forming a basis.

- This can only work for $r=1$ as all the columns have equal first and forth component. It indeed does work for $r=1$ because the first column plus the third minus the fourth is equal to

$$
\left(\begin{array}{l}
1 \tag{2}\\
0 \\
0 \\
1
\end{array}\right)
$$

- First row: yes, yes, no. Second row: yes, yes, yes. Third row: yes, no, no. Fourth row: no, no, no.
To elaborate on the final point, note that there is a non-trivial linear combination

$$
a(x-1)+b(x-1)^{2}+c(x-1)(x+1)=0
$$

where the zero on the right hand side mean "the zero polynomial," i.e. there are non-zero number a, b, c so that the function on the left hand side is zero no matter what x is. Indeed, take for example $a=2, b=-1, c=1$.

- This is an orthogonal matrix so the inverse is the transpose.
(3) This problem is similar to problem 2 in Spring 2014.
(4) - We follow the Gram-Schmidt process. The vector \vec{v}_{1} satisfies $\left\|\vec{v}_{1}\right\|=\sqrt{4}=2$, so set

$$
\vec{u}_{1}=\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right)
$$

Then $\vec{v}_{2}^{\perp}=\vec{v}_{2}-\left(\overrightarrow{v_{2}} \cdot \vec{u}_{1}\right) \vec{u}_{1}=\vec{v}_{2}-4 \vec{u}_{1}$, so we get

$$
\vec{v}_{2}^{\perp}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

2

The norm of \vec{v}_{2}^{\perp} is 2 , so setting

$$
\vec{u}_{2}=\frac{1}{2} \vec{v}_{2}^{\perp}=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right)
$$

we have that \vec{u}_{1} and \vec{u}_{2} orthonormalize \vec{v}_{1} and \vec{v}_{2}.

- This can be done in several ways, but the quickest is to let

$$
A=\left(\begin{array}{cc}
\mid & \mid \\
\vec{u}_{1} & \vec{u}_{2} \\
\mid & \mid
\end{array}\right)
$$

Then the matrix for the orthogonal projection is $A A^{T}$, which explicitly is
$A A^{T}=\left(\begin{array}{cc}-1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ -1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{cccc}-1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 & -1 / 2 & -1 / 2\end{array}=\right)=\frac{1}{2}\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)$
Department of Mathematics, Johns Hopkins University
E-mail address: jgell@math.jhu.edu

