LINEAR ALGEBRA (MATH 110.201)

MIDTERM II - 1 APRIL 2016

Name: _____

Section number/TA: _____

Instructions:

- (1) Do not open this packet until instructed to do so.
- (2) This midterm should be completed in **50 minutes**.
- (3) Notes, the textbook, and digital devices are not permitted.
- (4) Discussion or collaboration is **not permitted**.
- (5) All solutions must be written on the pages of this booklet.
- (6) Justify your answers, and write clearly; points will be subtracted otherwise.
- (7) Once you submit your exam, you will not be allowed to modify it.
- (8) By submitting this exam, you are agreeing to the above terms. Cheating or refusing to stop writing when time is called may result in an automatic failure.

Exercise	Points	Your score
1	8	
2	12	
3	16	
4	12	
5	12	
6	12	
7	12	
8	16	
Total	100	

Exercise 1 (8 points). Give an example of a 2×2 matrix A with $\text{Im}(A) \neq \text{Im}(\text{RREF}(A))$.

Exercise 2 (12 points). Suppose that B is any $m \times n$ matrix having only $\vec{0}_n$ in its kernel, and suppose that C is any $n \times k$ matrix having only $\vec{0}_k$ in its kernel. Under these assumptions, can you describe all vectors in Ker(BC)?

Exercise 3 (16 points). Consider the following matrix:

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ 2 & 3 & 4 & 2 & 3 & 4 \\ 3 & 4 & 5 & 3 & 4 & 5 \\ 4 & 5 & 6 & 4 & 5 & 6 \end{pmatrix}$$

(1) (4 points) Compute RREF(A).

(2) (6 points) Give a basis of $\operatorname{Ker}(A)$, and write down $\dim(\operatorname{Ker}(A))$.

(3) (6 points) Give a basis of Im(A), and write down dim(Im(A)).

Exercise 4 (12 points). If A is a nonzero 2×5 matrix, can we have dim(Ker(A)) = 1? What are the possibilities for dim(Ker(A))?

Exercise 5 (12 points). Determine whether the following vectors are a basis of \mathbb{R}^4 (justify your answer):

$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$

Exercise 6 (12 points). Let \mathscr{B} denote the basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ of \mathbb{R}^2 . Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation whose matrix with respect to \mathscr{B} is $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. What is the matrix of T with respect to the standard basis of \mathbb{R}^2 ? Express your answer in terms of a, b, c, d.

Exercise 7 (12 points). Suppose that v_1, v_2, v_3, v_4 are linearly independent vectors in a linear space V. Show that the vectors

 $v_1, v_2 + v_1, v_3 + v_2 + v_1, v_4 + v_3 + v_2 + v_1$

are also linearly independent in V.

Exercise 8 (16 points). Consider the set $W \subseteq P_3(\mathbb{R})$ of polynomials f(X) of degree ≤ 3 having the property that f(-2) = 0.

- (1) (4 points) Give an example of a degree 3 polynomial in W. Give an example of a degree 3 polynomial which is not in W.
- (2) (6 points) Show that W is a subspace of $P_3(\mathbb{R})$.
- (3) (6 points) Find a basis of W.