Midterm Exam 2 - Apr. 14, 2017

1. (a) (15 points) Find a matrix S that shows that

$$
A=\left[\begin{array}{cc}
-49 & 80 \\
-30 & 49
\end{array}\right] \text { is similiar to } D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \text {. }
$$

(b) (5 points) Compute A^{10}.
2. Determine which of the following transformations with domain P_{2}, the space of all polynomials of degree at most 2, is a linear isomorphism. Remember to justify your answers.
(a) (5 points) $T_{1}: P_{2} \rightarrow \mathbb{R}^{4}$ defined by $T_{1}(p)=\left[\begin{array}{l}p(0) \\ p(1) \\ p(2) \\ p(3)\end{array}\right]$.
(b) (5 points) $T_{2}: P_{2} \rightarrow \mathbb{R}^{3}$ defined by $T_{3}(p)=\left[\begin{array}{c}p(0) \\ p^{\prime}(0) \\ p^{\prime \prime}(0)\end{array}\right]$.
(c) (5 points) $T_{3}: P_{2} \rightarrow \mathbb{R}^{3}$ defined by $T_{2}(p)=\left[\begin{array}{c}p(1)+2 \\ (p(0))^{3} \\ p^{\prime}(0)\end{array}\right]$.
(d) (5 points) $T_{4}: P_{2} \rightarrow P_{2}$ defined by $T_{4}(p)(x)=x p^{\prime}(x)$.
3. (a) (10 points) Let $\mathbb{R}^{2 \times 2}$ be the space of 2×2 matrices and consider the ordered basis, \mathcal{B}, of $\mathbb{R}^{2 \times 2}$,

$$
\mathcal{B}=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) .
$$

For the linear transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ defined by

$$
T(A)=\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] A-A\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]
$$

determine $[T]_{\mathcal{B}}$, the \mathcal{B}-matrix of T.
(b) (10 points) Find a basis of $\operatorname{im}(T) \subset \mathbb{R}^{2 \times 2}$.
4. (a) (10 points) Determine all $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ so that the following is an orthogonal matrix:

$$
Q=\frac{1}{7}\left[\begin{array}{ccc}
a_{1} & 2 & 6 \\
a_{2} & -6 & 3 \\
a_{3} & 3 & 2
\end{array}\right] .
$$

(b) (10 points) Suppose a matrix, M, has the $Q R$-factorization $M=Q R$. Determine R given

$$
M=\left[\begin{array}{ccc}
4 & -1 & 0 \\
4 & 0 & -1 \\
2 & -1 & -1
\end{array}\right] \text { and } Q=\frac{1}{3}\left[\begin{array}{ccc}
2 & -1 & 2 \\
2 & 2 & -1 \\
1 & -2 & -2
\end{array}\right]
$$

5. In what follows, determine if the matrix C is symmetric, skew-symmetric or if there is not enough information to decide. Remember to justify your answer
(a) (5 points) $C=Q A Q^{-1}$ where $A \in \mathbb{R}^{n \times n}$ is symmetric and $Q \in \mathbb{R}^{n \times n}$ is orthogonal.
(b) (5 points) $C=A B A$, where $A, B \in \mathbb{R}^{n \times n}$ are both skew-symmetric.
(c) (5 points) $C=A^{\top} A-A A^{\top}$, where $A \in \mathbb{R}^{n \times n}$
(d) (5 points) $C=I_{n}+P^{2}$ where $P \in \mathbb{R}^{n \times n}$.
