
Solutions Midterm Exam 2 — Apr. 14, 2017

1. (a) (15 points) Find a matrix S that shows that

A =

[
−49 80
−30 49

]
is similiar to D =

[
−1 0
0 1

]
.

We are seeking an invertible 2× 2 matrices, S, so that AS = SD. To that end, let

S =

[
a b
c d

]
.

The equation AS = SD yields the system
−49a + 80c = −a
−30a + 49c = −c
−49b + 80d = b
−30b + 49d = d

Notice, this decouples into two systems with two equations and two unknowns[
−48 80
−30 50

] [
a
c

]
=

[
0
0

]
and

[
−50 80
−30 48

] [
b
d

]
=

[
0
0

]
.

As

rref

[
−48 80
−30 50

]
=

[
1 −5/3
0 0

]
and rref

[
−50 80
−30 48

]
=

[
1 −8/5
0 0

]
,

a non-trivial solution is

S =

[
5 8
3 5

]
.

Finally, one computes that rrefS = I2 so this matrix is invertible as required.

(b) (5 points) Compute A10.

As A = SDS−1, from the above we see that A10 = SD10S−1 = SI2S
−1 = SS−1 = I2. Here we

used that D was diagonal so

D10 =

[
(−1)10 0

0 110

]
=

[
1 0
0 1

]
= I2.
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2. Determine which of the following transformations with domain P2, the space of all polynomials of
degree at most 2, is a linear isomorphism. Remember to justify your answers.

(a) (5 points) T1 : P2 → R4 defined by T1(p) =


p(0)
p(1)
p(2)
p(3)

 .

This map is not a linear isomorphism as dimP2 = 3 (as a basis is
{

1, x, x2
}

) while dimR4 = 4
and a necessary condition for a linear isomorphism to exist is that the domain and target have
the same dimension.

(b) (5 points) T2 : P2 → R3 defined by T3(p) =

 p(0)
p′(0)
p′′(0)

 .

This map is a linear isomorphism. First of all, it is a linear transformation as

T2(p + kq) =

 (p + kq)(0)
(p + kq)′(0)
(p + kq)′′(0)

 =

 p(0) + kq(0)
p′(0) + kq′(0)
p′′(0) + kq′′(0)

 = T2(p) + kT2(q)

for any p, q ∈ P2, k ∈ R. Second of all,

T2(a0 + a1x + a2x
2) =

 a0
a1
2a2


and so an inverse map is given by

R2

a0a1
a2

 = a0 + a1x +
1

2
a2x

2.
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(c) (5 points) T3 : P2 → R3 defined by T2(p) =

p(1) + 2
(p(0))3

p′(0)

 .

This map is not a linear isomorphism as it is not a linear transformation. Indeed, T3(0) =2
0
0

 6= ~0 so the map cannot be linear.

(d) (5 points) T4 : P2 → P2 defined by T4(p)(x) = xp′(x).

This map is not a linear isomorphism as it is not invertible. Indeed, T4(0) = T4(1) = 0 so
there is not a unique solution to T4(x) = 0.
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3. (a) (10 points) Let R2×2 be the space of 2× 2 matrices and consider the ordered basis, B, of R2×2,

B =

([
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
.

For the linear transformation T : R2×2 → R2×2 defined by

T (A) =

[
1 −1
1 2

]
A−A

[
1 −1
1 2

]
,

determine [T ]B, the B-matrix of T .

Let us write

e11 =

[
1 0
0 0

]
, e12 =

[
0 1
0 0

]
, e21 =

[
0 0
1 0

]
, e22 =

[
0 0
0 1

]
We compute

T (e11) =

[
1 0
1 0

]
−
[
1 −1
0 0

]
=

[
0 1
1 0

]
= e12 + e21

T (e12) =

[
0 1
0 1

]
−
[
1 2
0 0

]
=

[
−1 −1
0 1

]
= −e11 − e12 + e22.

T (e21) =

[
−1 0
2 0

]
−
[
0 0
1 −1

]
=

[
−1 0
1 1

]
= −e11 + e21 + e22.

T (e22) =

[
0 −1
0 2

]
−
[
0 0
1 2

]
=

[
0 −1
−1 0

]
= −e12 − e21.

Hence,

[T ]B =


0 −1 −1 0
1 −1 0 −1
1 0 1 −1
0 1 1 0

 .
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(b) (10 points) Find a basis of im(T ) ⊂ R2×2.

We compute that

rref[T ]B =


1 0 1 −1
0 1 1 0
0 0 0 0
0 0 0 0

 .

Hence, the first and second columns are the only pivot columns (that is, columns that contain
a pivot). Hence, by the algorithm for finding a basis of the image we have that a basis of
im([T ]B) ⊂ R4 consists of 

0
1
1
0

 and


−1
−1
0
1


That is, a basis of Im (T ) ⊂ R2×2 consists of

e12 + e21 =

[
0 1
1 0

]
and − e11 − e12 + e22 =

[
−1 −1
0 1

]
.
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4. (a) (10 points) Determine all a1, a2, a3 ∈ R so that the following is an orthogonal matrix:

Q =
1

7

a1 2 6
a2 −6 3
a3 3 2

 .

Recall, Q is orthogonal if and only if its columns form an orthonormal basis of R3. Hence, as
a first step we must find a1a2

a3


that are orthogonal to  2

−6
3

 and

6
3
2


This means that the a1, a2, a3 satisfy the system{

2a1 − 6a2 + 3a3 = 0
6a1 + 3a2 + 2a3 = 0

That is, a1a2
a3

 ∈ ker

[
2 −6 3
6 3 2

]
Computing,

rref

[
2 −6 3
6 3 2

]
=

[
1 0 1

2
0 1 −1

3

]
we see that a1a2

a3

 = k

−3
2
6


for some k ∈ R. As the first column has to also have length 1 and∣∣∣∣∣∣

∣∣∣∣∣∣17
a1a2
a3

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
1

49
k2((−3)2 + 22 + 62) = k2

we see that k = ±1. Hence, the possible choices for a1, a2, a3, area1a2
a3

 = ±

−3
2
6

 .

Finally, to check that this is truly an orthgonal matrix we need to see that the second and
third columns are orthogonal and of unit length. This is straightforward.
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(b) (10 points) Suppose a matrix, M , has the QR-factorization M = QR. Determine R given

M =

4 −1 0
4 0 −1
2 −1 −1

 and Q =
1

3

2 −1 2
2 2 −1
1 −2 −2

 .

We observe that
M = QR⇒ R = Q−1M = Q>M

where the second equality follows from one of the properties of orthogonal matrices. Hence,

M =
1

3

 2 2 1
−1 2 −2
2 −1 −2

4 −1 0
4 0 −1
2 −1 −1

 =
1

3

18 −3 −3
0 3 0
0 0 3

 =

6 −1 −1
0 1 0
0 0 1

 .



Math 201, Spring 2017 Solutions to Midterm Exam 2 — Apr. 14, 2017 Page 8 of 9

5. In what follows, determine if the matrix C is symmetric, skew-symmetric or if there is not enough
information to decide. Remember to justify your answer

(a) (5 points) C = QAQ−1 where A ∈ Rn×n is symmetric and Q ∈ Rn×n is orthogonal.

Recall, that one of the properties of orthogonal matrices is that Q> = Q−1. We compute
using properties of the transpose that

C> = (QAQ−1)> = (Q−1)>A>Q>

Hence, using properties of orthogonal matrices and the fact that A is symmetric we have,

C> = (Q>)>AQ> = QAQ> = QAQ−1 = C.

As such, C is symmetric.

(b) (5 points) C = ABA, where A,B ∈ Rn×n are both skew-symmetric.

We compute using properties of the transpose and the fact that both A and B are skew-
symmetric that

C> = (ABA)> = A>B>A> = (−A)(−B)(−A) = −ABA = −C.

Hence, C is skew-symmetric.
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(c) (5 points) C = A>A−AA>, where A ∈ Rn×n

We compute using properties of the transpose that

C> = (A>A−AA>)> = (A>A)> − (AA>)> = A>(A>)> − (A>)>A> = A>A−AA> = C.

Hence, C is symmetric.

(d) (5 points) C = In + P 2 where P ∈ Rn×n.

We compute
C> = (In + P 2)> = I>n + (P 2)> = In + (P>)2.

Without further information about P , we cannot decide.


