Lecture 1: Overview+Review of vector operations.

What is the multivariable calculus course about?
Curves in space \((x(t), y(t), z(t))\), e.g. path of a particle.
Vectors and vector operations, e.g. the dot and the cross product.
Equations of lines and planes. (using vectors)
The the velocity \(v(t) = (x'(t), y'(t), z'(t))\), tangent vector to the particle.
Functions of several variables \(f(x, y, z)\), e.g. temperature at each point in space.
Derivatives of functions of several variables:
E.g. if \(f\) represent the temperature then the gradient vector \(\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)\)
represents the direction in which the temperature increases the most.
Multiple integrals: Double integrals over domains in the plane and triple or volume integrals over domains in space. Polar coordinates.

Ch 1: Vectors and vector operations.
Ch 2: Derivatives of functions of several variables.
Ch 3: **Vector fields** \(v(x, y, z) = ((v_1(x, y, z), v_2(x, y, z), v_3(x, y, z))\), at each point in space we are given a vector, and the divergence and curl of them.
The gravitational field is a vector field; at each point in space we are given a vector.
The vector field of a continuum of fluid particles is a vector field. At each point in space we are given the velocity of the particles at that point.

Each component of a vector field can be differentiated in each direction.
The divergence and curl are special derivatives with physical meaning.
Ch 4: Mx/min in several variables.
Ch 5 Double and Triple Integrals and the **change of variable theorem** in multiple integrals.
Ch 6 Line Integrals and Green’s theorem. Generalization of the fundamental theorem of calculus \(\int_a^b f'(x) \, dx = f(b) - f(a)\) to several variables: E.g. \(F = (F_1, F_2, 0)\)
a vector function and \(D\) a domain in the \(x-y\) plane with boundary \(C\) then
\[
\int_C F_1 \, dx + F_2 \, dy = \iint_D (\partial F_2/\partial x - \partial F_1/\partial y) \, dx.
\]
Ch 7 **Surface area and surface Integrals** flow through surface and Stoke’s and Gauss’s theorems.
Ch 8: **Differential forms.**

Surface integrals is the hardest part. Thinking geometrically and physically helps understanding concepts but is not needed to do problems.
Section 1.1 Vectors.

Recall that a point in space can be represented by an ordered triplet (x, y, z) of real numbers called the Cartesian or rectangular coordinates, that measure the lengths of the projections on the three coordinate axis.

A vector \mathbf{a} is a directed line segment or arrow; it has a length $\|\mathbf{a}\|$ and a direction. Its components (a_1, a_2, a_3) are the coordinates of the endpoint if it starts at the origin. In the notes vectors will be denoted by boldface letters \mathbf{a} and in the lectures by \overrightarrow{a}.

Addition of vectors is geometrically defined by the triangle law and algebraically by $(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$.

Scalar multiplication $\alpha \mathbf{a}$ is a vector in the same direction as \mathbf{a} with length $|\alpha| \|\mathbf{a}\|$ and its algebraically given by $\alpha(a_1, a_2, a_3) = (\alpha a_1, \alpha a_2, \alpha a_3)$.

The length of the vector is $\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$, by the Pythagorean theorem. A unit vector (i.e. of length one) in the direction of the vector \mathbf{a} is given by $\frac{\mathbf{a}}{\|\mathbf{a}\|}$.

Section 1.2: Basis and what we can do with vectors?

Standard basis: If $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$ and $\mathbf{k} = (0, 0, 1)$ then $\mathbf{a} = (a_1, a_2, a_3) = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$.

If $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ are points in space then the vector represented by the directed line segment $\overrightarrow{P_1 P_2}$ is $(x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$.

Ex Find the parametric equations of a line passing through $(0, 1, 2)$ and $(1, 2, 4)$.

Sol The vector $\mathbf{v} = (1, 2, 4) - (0, 1, 2) = (1, 1, 2)$ is parallel to the line and so is any multiple $t\mathbf{v}$. The points on the line are therefore given by $(x, y, z) = (0, 1, 2) + t(1, 1, 2) = (t, 1 + t, 2 + 2t)$.

Section 1.3:. Inner product (or scalar or dot product) of two vectors is

$$a \cdot b = (a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = a_1 b_1 + a_2 b_2 + a_3 b_3$$

The geometric interpretation is $\|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}.

Note that $\mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2$ and that $\mathbf{a} \cdot \mathbf{b} = 0$ if and only if \mathbf{a} and \mathbf{b} are perpendicular.

Note that $\|\mathbf{b}\| \cos \theta$ is the component of \mathbf{b} in the direction of \mathbf{a}.

The orthogonal projection \mathbf{p} of \mathbf{b} on \mathbf{a} is given by $\mathbf{p} = \|\mathbf{b}\| \cos \theta \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^2} \mathbf{a}$.

Ex. Decompose $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ into a vector \mathbf{b}_\parallel parallel to $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and a vector \mathbf{b}_\perp perpendicular to \mathbf{a}.

Sol. $\mathbf{a} \cdot \mathbf{b} = 2 - 2 + 4 = 4$, $\|\mathbf{a}\| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$ so $\mathbf{b}_\parallel = (\mathbf{a} \cdot \mathbf{b}) \frac{\mathbf{a}}{\|\mathbf{a}\|^2} = 4(\mathbf{i} + \mathbf{j} + \mathbf{k})/3$ and $\mathbf{b}_\perp = \mathbf{b} - \mathbf{b}_\parallel = (2 - 4/3)\mathbf{i} - (1 + 4/3)\mathbf{j} + (4 - 4/3)\mathbf{k}$.
Section 1.4. The vector or cross product is the vector

\[\mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2) \mathbf{i} + (a_3 b_1 - a_1 b_3) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}. \]

The geometric interpretation is \(\|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \mathbf{n} \), where \(\mathbf{n} \) is a unit vector, \(\|\mathbf{n}\| = 1 \), that is perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \) and pointing in the direction so that \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{n} \) form a positively oriented system.

Note that \(\mathbf{a} \times \mathbf{b} = 0 \) if and only if \(\mathbf{a} \) and \(\mathbf{b} \) are parallel.

To remember the definition of vector product we introduce so called determinants. A determinant of order 2 is defined by

\[
\begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix} = ad - bc
\]

Its magnitude is the area of the parallelogram with vectors \((a, b)\) and \((c, d)\) as edges. A determinant of order 3 is defined by

\[
\begin{vmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
\end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}
\]

Its magnitude is the volume of the parallelepiped with vectors \(\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \), \(\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} \) and \(\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k} \) as edges.

The cross product (2) is

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}
\]

Because of the similarity with (3), to remember this we symbolically write

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
\]