Lecture 20: 7.3 Stokes’ theorem. Let S be a surface with unit normal n and positively oriented boundary C, i.e. if you walk in the direction of the curve on the side of the normal then the surface should be on your left. Stokes’ theorem says

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \text{curl} \mathbf{F} \cdot n \, dS$$

if \mathbf{F} is a smooth vector field on S.

If S is a domain in the x-y plane then Stoke’s theorem reduces to Green’s theorem.

In fact

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_C P \, dx + Q \, dy,$$

if $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ and

$$\text{curl} \mathbf{F} \cdot n = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y},$$

if $n = \mathbf{k}$.

Ex. Find the integral

$$\int_C -y^3 \, dx + x^3 \, dy - z^3 \, dz,$$

where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane $x + y + z = 1$ and the orientation of C corresponds to a counterclockwise motion in the x-y plane.

Sol. Let $\mathbf{F} = -y^3 \mathbf{i} + x^3 \mathbf{j} - z^3 \mathbf{k}$. The integral is by Stokes theorem equal to the surface integral of $\text{curl} \mathbf{F} \cdot n$ over some surface S with the boundary C and with unit normal positively oriented with respect to the orientation of the boundary.

We have $\text{curl} \mathbf{F} = ... = (3x^2 + 3y^2) \mathbf{k}$. We take S to be the region in the plane $h(x,y,z) = x + y + z = 1$ with boundary C. A unit normal to S is given by $n = \nabla h/|\nabla h| = (\mathbf{i} + \mathbf{j} + \mathbf{k})/\sqrt{3}$ and it has the correct orientation since $n \cdot \mathbf{k} = 1/\sqrt{3} > 0$.

We therefore get

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \text{curl} \mathbf{F} \cdot n \, dS = \iint_S 3(x^2 + y^2)/\sqrt{3} \, dS.$$

Writing $dS = dx \, dy/|n \cdot \mathbf{k}| = \sqrt{3} \, dx \, dy$ we get

$$\iint_{x^2+y^2 \leq 1} 3(x^2 + y^2) \, dx \, dy = \int_0^{2\pi} \int_0^1 3r^2 \, r \, dr \, d\theta = \int_0^{2\pi} \frac{3}{4} r^4 \, d\theta = \frac{3}{4} 2\pi = \frac{3\pi}{2}.$$

Sol. 2. Directly calculating the line integral. Parameterizing the curve C we can write $x = \cos t$, $y = \sin t$ and $z = 1 - x - y = 1 - \cos t - \sin t$, $0 \leq t \leq 2\pi$ and write

$$\int_C -y^3 \, dx + x^3 \, dy - z^3 \, dz = \int_0^{2\pi} \left(-y^3 \frac{dx}{dt} + x^3 \frac{dy}{dt} - z^3 \frac{dz}{dt} \right) \, dt = \int_0^{2\pi} \left(\sin^4 t + \cos^4 t + (1 - \cos t - \sin t)^3 \sin t - (1 - \cos t - \sin t) \right) \, dt = \ldots \text{a lot more work}.$$
Interpretation of curl. Furthermore, Stokes Theorem can alternatively be used to define the curl: The component of \(\text{curl } F \) in the direction of a unit vector \(n \) is defined to be the limit as \(\varepsilon \to 0 \) of the line integral of \(F \) around a small circle \(C_\varepsilon \) of radius \(\varepsilon \) perpendicular to \(n \), divided by the area of the disc \(S_\varepsilon \) enclosed by \(C_\varepsilon \):

\[
\int_{C_\varepsilon} F \cdot ds = \iint_{S_\varepsilon} \text{curl } F \cdot n \, dS = \text{curl } F \cdot n \, \text{Area}(S_\varepsilon)
\]

where \(\text{curl } F \cdot n \) is evaluated at some point on \(S_\varepsilon \). It follows that

\[
\text{curl } F \cdot n = \lim_{\varepsilon \to 0} \frac{\int_{C_\varepsilon} F \cdot ds}{\text{Area}(S_\varepsilon)}
\]

Ex. Show that \(\int_{C} ye^zdx + xe^zdy + xye^zdz = 0 \) for a closed curve \(C \).

Sol. \(F = \nabla(xy^2) \) so \(\text{curl } F = 0 \) and by Stokes’s theorem the integral vanishes.

Ex. Find \(\int_{C_a} F \cdot ds \), where \(F = (-yi + xj)/(x^2 + y^2) \) and \(C_a \) is the circle \(x^2 + y^2 = a^2 \) in the \(x\)-\(y \) plane going counterclockwise.

Sol. \(\text{curl } F = ... = 0 \). Hence one would have thought that by Stokes theorem the line integral would vanish. **Wrong!** because \(F \) is not continuous.

However, if we parameterize \(x = a \cos t \) and \(y = a \sin t, 0 \leq t < 2\pi \), we get

\[
\int_{C_a} F \cdot ds = \int_{0}^{2\pi} \left(\frac{-y}{x^2 + y^2} \frac{dx}{dt} + \frac{x}{x^2 + y^2} \frac{dy}{dt} \right) dt = \int_{0}^{2\pi} \left(\frac{-a \sin t(-a \sin t)}{a^2} + \frac{a \cos t(a \cos t)}{a^2} \right) dt = \int_{0}^{2\pi} \sin^2 t + \cos^2 t \, dt = 2\pi
\]

The reason Stokes’ theorem failed to hold in this case was that the vector field \(F \) is singular when \((x, y) = (0, 0) \), i.e. along the \(z \)-axis.
Proof of Stokes’ theorem for a graph. We have seen that Stokes’ theorem for a surface \(S \) in the \(x-y \) plane reduces to Green’s theorem. We will now show that Stokes’ theorem for a surface \(S \) that can be written as a graph \(z = f(x,y) \), \((x,y) \in D\), over a region \(D \) in the plane, also reduces to Green’s theorem. If \(T \) is the tangent vector to the boundary curve \(C \) the Stokes’ theorem can be written:

\[
\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_S \text{curl} \mathbf{F} \cdot \mathbf{n} \, dS
\]

where \(ds \) is the arc length and \(dS \) the surface area element. The surface integral can then be written as an integral over \(D \) and the integral over the boundary curve can be written as an integral over the projection of the curve in the \(x-y \) plane. Then one can use Green’s theorem in the plane to show that these things are equal.

Since the surface can be written \(k(x,y,z) = z - f(x,y) \) a normal is given by \(\mathbf{N} = \nabla h = -f_x \mathbf{i} - f_y \mathbf{j} + \mathbf{k} \) and the unit normal is given by \(\mathbf{n} = \mathbf{N}/|\mathbf{N}| \). The surface measure is \(dS = dx\,dy/|\mathbf{n}| \), where \(\mathbf{k} \cdot \mathbf{n} = k \cdot \mathbf{N}/|\mathbf{N}| = 1/|\mathbf{N}| \), so \(dS = |\mathbf{N}| \, dx\,dy \) and

\[
\iint_S \mathbf{G} \cdot \mathbf{n} \, dS = \iint_D G_1 f_x - G_2 f_y + G_3 \, dx\,dy, \quad \text{if} \quad \mathbf{G} = G_1 \mathbf{i} + G_2 \mathbf{j} + G_3 \mathbf{k}
\]

If we apply to \(\mathbf{F} \) this to \(\mathbf{G} = \text{curl} \mathbf{F} \) we get

\[
\iint_S \text{curl} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_D -\left(\frac{\partial F_3}{\partial y} \right) f_x - \left(\frac{\partial F_1}{\partial z} \right) f_y + \left(\frac{\partial F_2}{\partial x} \right) f_z \, dx\,dy.
\]

If we parameterize the boundary \(x = x(t) \), \(y = y(t) \) and \(z = f(x,y) \) we have

\[
\frac{dz}{dt} = f_z \frac{dx}{dt} + f_y \frac{dy}{dt},
\]

\[
\int_C \mathbf{F} \cdot ds = \int_a^b \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt} \right) dt = \int_a^b \left((F_1 + f_z f_3) \frac{dx}{dt} + (F_2 + f_y f_3) \frac{dy}{dt} \right) dt
\]

This can now be considered as a line integral in the plane:

\[
\int_C \mathbf{F} \cdot ds = \oint_{\partial D} P \, dx + Q \, dy, \quad \text{where} \quad P(x,y) = F_1(x,y,f(x,y)) + f_x(x,y)f_3(x,y,f(x,y)),
\]

\[
Q(x,y) = F_2(x,y,f(x,y)) + f_y(x,y)f_3(x,y,f(x,y))
\]

We can therefore apply Greens formula in the plane.

\[
\frac{\partial P}{\partial y} = \frac{\partial F_1}{\partial y} + \frac{\partial F_3}{\partial y} f_y + f_x \frac{\partial F_3}{\partial y}, \quad \frac{\partial Q}{\partial x} = \frac{\partial F_2}{\partial x} + \frac{\partial F_3}{\partial x} f_x + f_y \frac{\partial F_3}{\partial x}
\]

so by Green’s theorem

\[
\int_C \mathbf{F} \cdot ds = \oint_{\partial D} P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx\,dy
\]

\[
= \iint_D \left(\frac{\partial F_3}{\partial y} \right) f_x - \left(\frac{\partial F_1}{\partial z} \right) f_y + \left(\frac{\partial F_2}{\partial x} \right) f_z \, dx\,dy,
\]
Some more calculations of surface integrals.

Ex. Let S be the part of the hyperboloid $x^2 + y^2 - z^2 = 1$ with $0 \leq z \leq 1$.

A parametrization of the surface is given by

$$X(u, v) = (\cos u - v \sin u)i + (\sin u + v \cos u)j + vk, \quad 0 \leq u \leq 2\pi, \quad 0 \leq v \leq 1.$$

a) Find the area element dS expressed in terms of the parametrization $du \, dv$.

b) Find the surface integral $\int_S zdS$.

Sol. a) $X_u = (-\sin u - v \cos u)i + (\cos u - v \sin u)j$ and $X_v = -\sin u + \cos u j + k$;

$$X_u \times X_v = \begin{vmatrix} i & j & k \\ -\sin u - v \cos u & \cos u - v \sin u & 0 \\ -\sin u & \cos u & 1 \end{vmatrix} = (\cos u - v \sin u)i + (\sin u + v \cos u)j - vk$$

Hence $dS = |X_u \times X_v| \, du \, dv = \sqrt{1 + 2v^2} \, du \, dv$.

b) $\int \int_S z \, dS = \int_0^{2\pi} \int_0^1 v \sqrt{1 + 2v^2} \, du \, dv = 2\pi \int_0^1 \sqrt{1 + 2v^2} \, dv = \pi \left[\frac{(1 + 2v^2)^{3/2}}{3} \right]_0^1 = \frac{\pi}{3} \left(3^{3/2} - 1 \right)$.