
Math 302 Differential Equations

Many phenomena in physics and engineering are described by differential equa-
tions.

Lecture 1: 1.1-2. Two Models, Direction fields, Solution curves.

Model I: A Falling object is subject to Newton’s second law:

F = ma Force = mass × acceleration

where

a =
dv

dt
acceleration = the time derivative of the velocity

and

F = mg − γv Force = gravitational force − air resistance friction

where g ∼ 9.8 is the gravitational constant and γ > 0 is due to air resistance. Hence

m
dv

dt
= mg − γv

If we plug in certain values of the constants we get

(1.1.1)
dv

dt
= 9.8− v

5
≡ f(v)

where the last equality defines f(v).
Given v, f(v) in (1.1) gives the slope dv/dt, ie. the rate of increase of the

velocity. We can display this information graphically in the t-v plane by drawing
small arrows with slope f(v), i.e. vectors in the direction (1, f(v)), at a number of
points (t, v) in the t-v plane. This is called a slope field (or direction field).

One can the approximately calculate the solution curve starting at some point
(t, v) in the t-v plane by going in the direction of the arrow f(v) in the t-v plane
for some small time interval, and then at the new point going in the direction of
the arrow at that point for some small time interval, and so on.

E.g. if v = 60 then f(v) = f(60) = −2.2, independently of what t is, and
f(40) = 1.8 and f(50) = −0.2, see Figure 1.1.2 in the text book.

Notice f(v) changes sign, if f(60) < 0 and f(40) > 0, and in fact f(49) = 0.
This means that if v = 49 then dv/dt = 0 so v stays constant.

A point where f(v) = 0 is called an equilibrium point. In this case it is in fact
a stable equilibrium because if v > 49 then f(v) < 0 so dv/dt < 0 and it will
push v down towards 49, and if v < 49 then f(v) > 0 so dv/dt > 0 which will push
v up towards 49. It is called stable because any points in the t-v plane with v close
to 49 will be pulled in towards v = 49, in fact graphically it looks like eventually
all paths will approach v = 49 as time t → ∞.
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Model II: Mice and Owls. Consider a population p of field mice who inhabit a
certain area. In the absence of predators it is natural to assume that the population
increases at a rate proportional to the current population:

(1.1.2)
dp

dt
= rp

The proportionality factor r is called the growth rate. Suppose that the time is
measured in months and that a mice couple have one offspring each month, i.e. 1/2
offspring per mouse. Let us also suppose that several owls live in the same area
and eats a fixed number of mice, say 15 per day, or 450 per month. We then have

(1.1.3)
dp

dt
= 0.5p− 450 = g(p)

If, we as for the earlier model draw the direction field we notice a big difference.
There is an equilibrium at p = 900, for which g(p) = g(900) = 0, but for p > 900,
g(p) > 0 so the population increases and hence move away from 900. Similarly, if
p < 900 then g(p) < 0 so the population decreases and hence also move away from
p = 900. We conclude that this is an unstable equilibrium

The above models are not realistic when the population becomes large since
there is a limited food supply and it can’t sustain an arbitrarily large population.


