
Lecture 10: 3.3 Complex roots. In this chapter we want to solve the equation

(3.3.1) ay′′ + by′ + cy = 0

where a, b, c are real constants. We saw that y = ert is a solution to the equation
if r is a root of the characteristic equation:

(3.3.2) ar2 + br + c = 0

Let r1 and r2 be the roots of (3.3.2). In section 3.1 we saw that if r1 ̸= r2 and they
are both real the general solution of (3.3.1) is in fact of the form y = c1e

r1t+ c2e
r2t

for some constants c1 and c2. We will now consider the case of complex roots and
since a, b, c are real the complex roots come in complex conjugate pairs (show this)
so unless r1 and r2 both are real they must be of the form

(3.3.3) r1 = λ+ iµ, r2 = λ− iµ, i =
√
−1

Analogous to the real case we hope that we get to solutions of the form

(3.3.4) y1 = er1t, y2 = er2t

However, we don’t even know what ez is supposed to mean when z is complex. In
order for (3.3.4) to be solutions for complex numbers we must be able to extend
the definition of the exponential functions to complex numbers in such a way that

(3.3.5)
d

dt
ert = rert

also if r is complex. To get a clue we must ask what it is when z is real. One
expression is the Taylor series

(3.3.6) ez =
∞∑
k=0

zk

k!

This makes sense also when z is complex since we defined how to multiply and add
complex numbers and since the sum is absolutely convergent. It is easy to see that
(3.3.5) follows by differentiating the series (3.3.6) termwise:

d

dt

∞∑
k=0

zktk

k!
=

∞∑
k=0

zkt(k − 1)

(k − 1)!
= z

∞∑
k=0

zktk

k!

However, if we were to use (3.3.6) as a definition we must prove that ez1+z2 =
ez1ez2 also for complex numbers z1 and z2 and showing that we get the series for the
sum when we multiply together the series would involve proving some combinatorial
identities. Instead we use (3.3.6) to get an expression we take as definition. By
(3.3.6);

eiµ =
∑ (iµ)k

k!
=

∑ (−1)nµ2n

(2n)!
+ i

∑ (−1)n−1µ2n−1

(2n− 1)!
1



2

But the two series are the Taylor series for cosµ respectively sinµ so we get

eiµ = cosµ+ i sinµ.

Since we want the product rule eλ+iµ = eλeiµ to hold we define

eλ+iµ = eλ(cosµ+ i sinµ)

for any complex number λ+ iµ and hence also for any t

ert = e(λ+iµ)t = eλt
(
cos (µt) + i sin (µt)

)
, r = λ+ iµ

With this definition it follows from differentiation that also for complex r

d

dt
ert = r ert

Since this was the rule used to prove that (3.3.4) are solutions of (3.3.1) when
(3.3.3) are the roots of (3.3.2) it follows that indeed (3.3.4) are solutions to (3.3.1)
also when r1 and r2 are complex roots of the characteristic polynomial.

We have now found two solution to (3.3.1)

(3.3.6) z1 = eλt
(
cos (µt) + i sin (µt)

)
, z2 = eλt

(
cos (µt)− i sin (µt)

)
In fact the expression for z2 follows from the one for z1 by replacing µ by −µ and
using that cos (−µt) = cos (µt) and sin (−µt) = − sin (µt). There is however one
remaining problem which is that (3.3.6) are complex but we expect the solutions
to (3.3.1) to correspond to some real physical quantity. However

(3.3.7) y1 =
z1 + z2

2
= eλt cos (µt), y2 =

z1 − z2
2i

= eλt sin (µt)

are real solutions to (3.3.1). We can now if we want forget the derivation of these
solutions using complex numbers and instead just check that they are solutions.
We claim that the general solution of (3.3.1) is of the form

y = c1y1 + c2y2

In fact, by section 3.2 we only need to check that the Wronskian is non-vanishing

W = y1y
′
2 − y′1y2 = eλt cos (µt)eλt

(
µ cos (µt) + λ sin (µt)

)
−eλt

(
−µ sin (µt)+λ cos (µt)

)
eλt sin (µt) = e2λt

(
cos2 (µt)+sin2 (µt)

)
= e2λt ̸=0

Ex Find all solutions to the equation

y′′ + 2y′ + 5y = 0

Sol The characteristic polynomial is

r2 + 2r + 5 = (r + 1 + 2i)(r + 1− 2i)

with roots r1 = −1 + 2i and r2 = −1− 2i so the general solution is

y = c1e
−t cos (2t) + c2e

−t sin (2t)


