Lecture 11: 3.4: Repeated roots. In this chapter we want to solve the equation

$$
\begin{equation*}
L[y] \equiv a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3.4.1}
\end{equation*}
$$

where a, b, c are real constants. We saw that $y=e^{r t}$ is a solution to the equation if r is a root of the characteristic equation:

$$
\begin{equation*}
a r^{2}+b r+c=a\left(r-r_{1}\right)\left(r-r_{2}\right)=0 \tag{3.4.2}
\end{equation*}
$$

We have dealt with distinct real roots $r_{1} \neq r_{2}$ and complex conjugate roots, $r_{2}=\bar{r}_{1}$. It only remains to deal with the case of double roots: $r_{1}=r_{2}=r=-\frac{b}{2 a}$. In that case $e^{r_{1} t}$ and $e^{r_{2} t}$ is the same function so we only have one independent solution

$$
\begin{equation*}
y_{1}=e^{r t} . \tag{3.4.3}
\end{equation*}
$$

and we must obtain another solution. It is easy to check that if $r_{1}=r_{2}=r$ then

$$
\begin{equation*}
y_{2}=t e^{r t} \tag{3.4.4}
\end{equation*}
$$

is another solution to (3.4.1) and $W\left(y_{1}, y_{2}\right) \neq 0$ so any solution can be written as

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2} . \tag{3.4.5}
\end{equation*}
$$

How did we find the solution y_{2} ? We make the following ansatz

$$
y_{2}=v y_{1}
$$

We put this into the equation and we will obtain a simpler equation for v. In fact, if v is any function then $\left(v y_{1}\right)^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}$ and $\left(v y_{1}\right)^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}$ so

$$
\begin{array}{r}
a\left(v y_{1}\right)^{\prime \prime}+b\left(v y_{1}\right)^{\prime}+c v y_{1}=a\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+b\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+c v y_{1} \tag{3.4.6}\\
=a v^{\prime \prime} y_{1}+v^{\prime}\left(2 a y_{1}^{\prime}+b y_{1}\right)+v\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)=a v^{\prime \prime} y_{1}+v^{\prime}\left(2 a y_{1}^{\prime}+b y_{1}\right)
\end{array}
$$

since y_{1} is a solution. The importance of this is that its a first order system

$$
w^{\prime}+\frac{\left(2 a y_{1}^{\prime}+b y_{1}\right)}{a y_{1}} w=0, \quad \text { for } \quad v^{\prime}=w
$$

which can be solved, first for w, then for v. This is called reduction of order.
In case of a double root $r=-\frac{b}{2 a}$ its even simpler since $y_{1}^{\prime}+b y_{1}=(2 a r+b) e^{r t}=0$.

$$
w^{\prime}=0 \quad \Leftrightarrow \quad w=C_{1} \quad v^{\prime}=C_{1} \quad \Leftrightarrow \quad v=C_{1} t+C_{2}
$$

If we choose $C_{1}=1$ and $C_{2}=0$ we get (3.4.3) and if $C_{1}=0$ and $C_{2}=1$ we get (3.4.4).
Ex Find the general solution to $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
Sol The characteristic polynomial is $r^{2}-4 r+4=(r-2)^{2}$ so it has a double root $r_{1}=r_{2}=2$. The general solution is hence $y=c_{1} y_{1}+c_{2} y_{2}$, where $y_{1}=e^{2 t}$ and $y_{2}=t e^{2 t}$.

We will explore two other methods that have the advantage that they can be used also for the Nonhomogeneous problem. If $L[y]=\left(a D^{2}+b D+c\right) y$, where D is the time derivative, and $p(r)=a r^{2}+b r+c$ then one can prove the following formula:

$$
\begin{equation*}
L\left[v(t) e^{r t}\right]=\left(p(r) v(t)+p^{\prime}(r) v^{\prime}(t)+\frac{1}{2} p^{\prime \prime}(r) v^{\prime \prime}(t)\right) e^{r t} \tag{3.4.8}
\end{equation*}
$$

by a direct calculation as above checking that both sides are the same.
If r is a double root then $p(r)=p^{\prime}(r)=0$ so (3.4.8) vanishes if $v^{\prime \prime}=0$.
Anther way is to write $L[y]=a\left(D-r_{1}\right)\left(D-r_{2}\right) y=0$ and solve the two problems

$$
\begin{equation*}
\left(D-r_{1}\right) z=0, \quad\left(D-r_{2}\right) y=z \tag{3.4.9}
\end{equation*}
$$

The first gives $z=c_{1} e^{r_{1} t}$ and the second gives after multiplying by an integrating factor $D\left(e^{-r_{2} t} y\right)=e^{\left(r_{1}-r_{2}\right) t}$. If $r_{1}=r_{2}$ we get if we integrate $e^{-r_{1} t} y=c_{2} t+c_{1}$ or $y=c_{2} t e^{r_{1} t}+c_{1} e^{r_{1} t}$.
3.5: Nonhomogeneous equation. We return to the nonhomogeneous case

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{3.5.1}
\end{equation*}
$$

The complementary homogeneous equation is when $g(t) \equiv 0$:

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{3.5.2}
\end{equation*}
$$

Th If Y_{1} and Y_{2} are solutions to (3.5.1) then $Y_{1}-Y_{2}$ is a solution to (3.5.2). Pf

$$
L\left[Y_{1}-Y_{2}\right]=L\left[Y_{1}\right]-L\left[Y_{2}\right]=g(t)-g(t)=0 .
$$

Th Let Y be a particular solution to (3.5.1). Then the general solution to (3.5.1) is

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2}+Y \tag{3.5.2}
\end{equation*}
$$

where y_{1} and y_{2} is a fundamental set of solutions to (3.5.2).
Pf If $Y_{1}=y$ is an arbitrary solution and $Y_{2}=Y$ then by the previous theorem $y-Y$ is a solution to (3.5.2) and since y_{1} and y_{2} form a fundamental set of solutions it must be equal to $c_{1} y_{1}+c_{2} y_{2}$ for some constants c_{1} and c_{2}.

The strategy for finding solutions to (3.5.1) is now clear.
(i) Find the most general solution to (3.5.2), called the complementary solution y_{c}.
(ii) Find one solution Y to (3.5.1), called a particular solution.
(iii) Obtain the most general solutions to (3.5.1) as $y=y_{c}+Y$.

We now return to the constant coefficient case to investigate methods to find particular solutions to solve certain nonhomogeneous problems:

The method of undetermined coefficients.

Ex Find the most general solution to

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime}+3 y^{\prime}+2 y=e^{4 t} \tag{3.5.3}
\end{equation*}
$$

Sol The characteristic polynomial is $r^{2}+3 r+2=(r+2)(r+1)$ so the complimentary solution is $y_{c}=c_{1} e^{-t}+c_{2} e^{-2 t}$. We must now find one particular solution. Why don't we try $Y=A e^{4 t}$ since $e^{4 t}$ is on the right hand side

$$
L\left[A e^{t}\right]=16 A e^{4 t}+12 A e^{4 t}+2 A e^{4 t}=30 A e^{4 t}=e^{4 t}
$$

if $A=1 / 30$ so $Y=e^{4 t} / 30$ is a particular solutions. Hence the most general solution is

$$
y=c_{1} e^{-t}+c_{2} e^{-2 t}+\frac{1}{30} e^{4 t}
$$

