Lecture 12: 3.5: Nonhomogeneous equation. We return to the nonhomogeneous case

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{3.5.1}
\end{equation*}
$$

The complementary homogeneous equation is when $g(t) \equiv 0$:

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{3.5.2}
\end{equation*}
$$

Th If Y_{1} and Y_{2} are solutions to (3.5.1) then $Y_{1}-Y_{2}$ is a solution to (3.5.2). Pf

$$
L\left[Y_{1}-Y_{2}\right]=L\left[Y_{1}\right]-L\left[Y_{2}\right]=g(t)=g(t)=0
$$

Th Let Y be a particular solution to (3.5.1). Then the general solution to (3.5.1) is

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2}+Y \tag{3.5.2}
\end{equation*}
$$

where y_{1} and y_{2} is a fundamental set of solutions to (3.5.2).
Pf If $Y_{1}=y$ is an arbitrary solution and $Y_{2}=Y$ then by the previous theorem $y-Y$ is a solution to (3.5.2) and since y_{1} and y_{2} form a fundamental set of solutions it must be equal to $c_{1} y_{1}+c_{2} y_{2}$ for some constants c_{1} and c_{2}.

The strategy for finding solutions to (3.5.1) is now clear.
(i) Find the most general solution to (3.5.2), called the complementary solution y_{c}.
(ii) Find one solution Y to (3.5.1), called a particular solution.
(iii) Obtain the most general solutions to (3.5.1) as $y=y_{c}+Y$.

We now return to the constant coefficient case to investigate methods to find particular solutions to solve certain nonhomogeneous problems:

The method of undetermined coefficients.

Ex Find the most general solution to

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime}+3 y^{\prime}+2 y=e^{4 t} \tag{3.5.3}
\end{equation*}
$$

Sol The characteristic polynomial is $r^{2}+3 r+2=(r+2)(r+1)$ so the complimentary solution is $y_{c}=c_{1} e^{-t}+c_{2} e^{-2 t}$. We must now find one particular solution. Why don't we try $Y=A e^{4 t}$ since $e^{4 t}$ is on the right hand side

$$
L\left[A e^{t}\right]=16 A e^{4 t}+12 A e^{4 t}+2 A e^{4 t}=30 A e^{4 t}=e^{4 t}
$$

if $A=1 / 30$ so $Y=e^{4 t} / 30$ is a particular solutions. Hence the most general solution is

$$
y=c_{1} e^{-t}+c_{2} e^{-2 t}+\frac{1}{30} e^{4 t}
$$

Ex Find a particular solution to

$$
\begin{gather*}
L[y] \equiv y^{\prime \prime}+3 y^{\prime}+2 y=\sin t \tag{3.5.4}\\
1
\end{gather*}
$$

$A \sin t$ will not work because we will also get $3 A \cos t$ in the left. Let us instead try $Y=A \sin t+B \cos t$, in which $Y^{\prime}=A \cos t-B \sin t$ and $Y^{\prime \prime}=-A \sin t-B \cos t$ so

$$
\begin{aligned}
L[A \sin t+B \cos t]= & -A \sin t-B \cos t+3 A \cos t-3 B \sin t+2 A \sin t+2 B \cos t \\
& =(-A-3 B+2 A) \sin t+(-B+3 A+2 B) \cos t=\sin t
\end{aligned}
$$

if $-A-3 B+2 A=A-3 B=1$ and $-B+3 A+2 B=B+3 A=0$, which is equivalent to $B=-3 A$ and $10 A=1$, i.e. $A=1 / 10$ and $B=-3 / 10$. The particular solution is

$$
Y=\frac{1}{10} \sin t-\frac{3}{10} \cos t
$$

The reason it does not work with just $\sin t$ is that $\sin t=\left(e^{i t}-e^{-i t}\right) / 2 i$ and one can separately solve for $e^{i t} / 2 i$ and $-e^{-i t} / 2 i$ and add the results as we shall see below

Two find the solution for more involved right hand sides that are sums we use that

$$
L\left[Y_{1}\right]=g_{1}, \quad L\left[Y_{2}\right]=g_{2} \quad \Longrightarrow \quad L\left[Y_{1}+Y_{2}\right]=L\left[Y_{1}\right]+L\left[Y_{2}\right]=g_{1}+g_{2}
$$

Ex Find a particular solution to

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}+\sin t \tag{3.5.5}
\end{equation*}
$$

Sol Adding up the solutions in the previous example gives

$$
Y=\frac{1}{30} e^{4 t}+\frac{1}{10} \sin t-\frac{3}{10} \cos t
$$

Ex Find a particular solution to

$$
\begin{equation*}
L[y] \equiv y^{\prime \prime}+3 y^{\prime}+2 y=e^{-t} \tag{3.5.3}
\end{equation*}
$$

Sol It doesn't work with $A e^{-t}$ since e^{-t} is a solution to the homogeneous equation $L\left[e^{-t}\right]=0$. We will therefore try $Y=A t e^{-t}$. Then $Y^{\prime}=A e^{-t}-A t e^{-t}$ and $Y^{\prime \prime}=-2 A e^{-t}+A t e^{-t}$ so

$$
L\left[A t e^{-t}\right]=-2 A e^{-t}+A t e^{-t}+3\left(A e^{-t}-A t e^{-t}\right)+2 A t e^{-t}=A e^{-t}=e^{-t},
$$

if $A=1$ so a particular solution is

$$
Y=t e^{-t}
$$

The general rule If $g(t)=\ldots$ then try with $Y(t)=\ldots$:

$$
\begin{aligned}
g(t)= & a_{0} t^{n}+\ldots+a_{n}, \\
g(t)= & \left(a_{0} t^{n}+\ldots+a_{n}\right) e^{\alpha t}, \\
g(t)= & \left(a_{0} t^{n}+\ldots+a_{n}\right) e^{\alpha t} \cos \beta t \\
& +\left(b_{0} t^{n}+\ldots+b_{n}\right) e^{\alpha t} \sin \beta t,
\end{aligned}
$$

$$
Y(t)=t^{s}\left(A_{0} t^{n}+\ldots+A_{n}\right)
$$

$$
Y(t)=t^{s}\left(A_{0} t^{n}+\ldots+A_{n}\right) e^{\alpha t}
$$

$$
Y(t)=t^{s}\left(A_{0} t^{n}+\ldots+A_{n}\right) e^{\alpha t} \cos \beta t
$$

$$
+t^{s}\left(B_{0} t^{n}+\ldots+B_{n}\right) e^{\alpha t} \sin \beta t
$$

where $s=0,1,2$ is the smallest integer that will assure that Y is not a solution to the homogeneous equation.

