
Lecture 14: 3.7 Free vibrations.

Consider a mass m hanging in a spring. The mass causes an elongation L of the
spring in the downward (positive) direction. The gravitational force mg acts down-
wards and there is a balancing upward force Fs, due to the spring. By Hooke’s law
Fs = −kL, where the constant of proportionality k is called the spring constant. If
the mass is in equilibrium, i.e. static, then force balance gives mg − kL = 0.

We now want to study the dynamic problem of he motion of the mass. Let u(t),
measured positive downwards, denote the displacement of the mass from its equi-
librium position, at time t. Then by Newton’s second law, the mass times the
acceleration of the mass is equal to total force acting on the mass:

mu′′ = mg + Fs + Fd + F

Heremg is the gravitational force and Fs = −k(L+u) is the spring force. Fd = −γu′

is a force due to damping or friction and F is a possible external force. Since we
already calculated that kL = mg these forces cancel each other and we get

mu′′ = mg − k(L+ u)− γu′ + F = −ku− γu′ + F

or
mu′′ + γu′ + ku = F, k > 0, γ ≥ 0

We furthermore given the mass some initial position and velocity:

u(0) = u0, u′(0) = v0

Let us first look on undamped (γ = 0) free (F = 0) vibrations:

mu′′ + ku = 0

The characteristic polynomial is mr2 + k = 0 so r = ±ω0 i, where ω0 =
√
k/m so

u = A cosω0t+B sinω0t = R cos (ω0t− δ),

where R=
√
A2+B2 is the amplitude and δ, given by tan δ=A/B, is a phase factor.

Note that the frequency ω0 and period T = 2π/ω0 of the vibration depends only
on the spring constant and mass but is independent on initial conditions.

Let us first look on damped (γ > 0 free (F = 0) vibrations:

mu′′ + γu+ ku = 0

The characteristic polynomial is mr2 + γr + k = 0 with roots:

r1, r2 = − γ
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If γ2 < 4km then with µ =
√
γ2/(2m)2 − k/m we get a damped vibration

u = e−γt/2m
(
A cosµt+B sinµt

)
= Re−γt/2m cos (µt− δ),

This identity is proved as follows. At the critical damping when γ2 = 4km we get

u = (A+Bt)e−γt/2m

and when γ2 > 4km we get
u = Aer1t +Ber2t
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We get exactly the same equation for an electric circuit as for a spring. Consider
the RCL-circuit of a resistor R, a capacitor C and an inductor L coupled in a series
circuit with an external voltage source E applied. Then adding up the voltage drops
over the components we get with Q denoting the charge and Q′ = I the current:

LQ′′ +RQ′ +
1

C
Q = E(t)

3.8 Forced vibrations.
Let us now consider the case of forced undamped vibrations:

u′′ + k u = F0 cosωt

Physical examples of this are the electric circuit with a voltage forced on it, men-
tioned above but also a car attached to spring that can accelerate. The general
solution is if ω ̸= ω0 =

√
k/m:

u = c1 cosω0t+ c2 sinω0t+
F0

m(ω2
0 − ω2)

cosωt

In particular if we choose initial conditions u(0) = u′(0) = 0 we get

u =
F0

m(ω2
0 − ω2)

(
cosωt− cosω0t

)
Using the formula cosα− cosβ = −2 sin α−β

2 sin α+β
2 this can also be written as

u =
( 2F0

m(ω2
0 − ω2)

sin
(ω0 − ω)t

2

)
sin

(ω + ω0)t
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If ω is very close to ω0 then |ω−ω0|/2 is a small compared to |ω+ω0|/2 and one can
think of the parenthesis as a slowly varying amplitude. This is used for amplitude
modulation radio waves.
Note that as ω → ω0 the amplitude becomes larger and using l’Hospitals rule or
the Taylor series for sinα ∼ α, we get

2F0

m(ω2
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sin
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2
→ F0

2mω0
t, ω → ω0

When ω = ω0 we have resonance, then the particular solution is no longer given
by the above and instead it is

u = c1 cosω0t+ c2 sinω0t+
F0

2mω0
t sinω0t

In this case we can put in a constant force to a system and the solution builds up
over time and becomes larger and larger.


