Lecture 14: 3.7 Free vibrations.

Consider a mass m hanging in a spring. The mass causes an elongation L of the
spring in the downward (positive) direction. The gravitational force mg acts down-
wards and there is a balancing upward force Fy, due to the spring. By Hooke’s law
Fy = —kL, where the constant of proportionality k is called the spring constant. If
the mass is in equilibrium, i.e. static, then force balance gives mg — kL = 0.

We now want to study the dynamic problem of he motion of the mass. Let u(t),
measured positive downwards, denote the displacement of the mass from its equi-
librium position, at time ¢. Then by Newton’s second law, the mass times the
acceleration of the mass is equal to total force acting on the mass:

mu" =mg+F, +F;+ F

/

Here myg is the gravitational force and Fy = —k(L+u) is the spring force. Fy = —vyu
is a force due to damping or friction and F' is a possible external force. Since we
already calculated that kL = mg these forces cancel each other and we get

mu” =mg —k(L+u) —yu' +F = —ku—~yu' + F

or
mu” +~yu' + ku = F, k>0,v>0

We furthermore given the mass some initial position and velocity:
u(0) = uy, u'(0) = g
Let us first look on undamped (v = 0) free (F = 0) vibrations:
mu” +ku=0
The characteristic polynomial is m7? 4+ k = 0 so r = w1, where wg = \/k/_m SO
u = Acoswyt + Bsinwpt = Rcos (wot — 9),

where R=+/A%+ B? is the amplitude and 9, given by tand=A/B, is a phase factor.
Note that the frequency wg and period T' = 27/wg of the vibration depends only
on the spring constant and mass but is independent on initial conditions.

Let us first look on damped (y > 0 free (F' = 0) vibrations:

mu” +yu+ku=0

The characteristic polynomial is mr? + 7 + k = 0 with roots:
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If 42 < 4km then with u = \/42/(2m)2 — k/m we get a damped vibration
w=e /M (Acosput + Bsinput) = Re™ "2 cos (ut — 6),
This identity is proved as follows. At the critical damping when v? = 4km we get
u=(A+ Bt)e*Vt/Qm

and when v2 > 4km we get
u = Ae™' + Be™!
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We get exactly the same equation for an electric circuit as for a spring. Consider
the RCL-circuit of a resistor R, a capacitor C' and an inductor L coupled in a series
circuit with an external voltage source E applied. Then adding up the voltage drops
over the components we get with @Q denoting the charge and Q' = I the current:

LQ" + RQ' + é@ = E(t)

3.8 Forced vibrations.
Let us now consider the case of forced undamped vibrations:

v’ 4+ ku = Fycoswt

Physical examples of this are the electric circuit with a voltage forced on it, men-
tioned above but also a car attached to spring that can accelerate. The general

solution is if w # wp = \/k/m:

cos wt

U = c1 cos wyt + co sinwot + 5 3
m(ws — w?)

In particular if we choose initial conditions u(0) = v’(0) = 0 we get

U = L(coswt — COSw t)
m(wf —w?) ’
Using the formula cosa — cos f = —2sin # sin O‘Qﬂ this can also be written as
2F, . (wo—w)ty . (w+wo)t
u = ( 5 o sin ) sin
m(wg — w?) 2 2

If w is very close to wy then |w—wq|/2 is a small compared to |w+wg|/2 and one can
think of the parenthesis as a slowly varying amplitude. This is used for amplitude
modulation radio waves.

Note that as w — wg the amplitude becomes larger and using 1'Hospitals rule or
the Taylor series for sin o ~ a;, we get

2F, . (wo —w)t Fy
5 5y sin — t, w — wo
m(wg — w?) 2 2muwyg

When w = wy we have resonance, then the particular solution is no longer given
by the above and instead it is

Fy

U = ¢1 cos wol + ¢ sinwgt + t sin wot

mwo

In this case we can put in a constant force to a system and the solution builds up
over time and becomes larger and larger.



