
Lecture 16: 6.1-6.2 More Laplace transforms. Recall the Laplace transform:

(6.2.1) L{f(t)} = F (s) =

∫ ∞

0

e−stf(t) dt

This is defined for s > a if f is piecewise continuous and |f(t)| ≤ Keat, for t ≥ M .
We need to show that the limit as T∞ of∫ T

0

e−stf(t) dt =

∫ M

0

e−stf(t) dt+

∫ T

M

e−stf(t) dt

exist. The first integral is bounded independent of T and and the second integral
can be estimated by

∣∣∣ ∫ T

M

e−stf(t) dt
∣∣∣ ≤ ∫ T

M

e−st|f(t)| dt ≤
∫ T

0

e−stKeat dt = K

∫ T

0

e−(s−a)t dt

=
−K

s− a
e(s−a)t

∣∣∣T
0
=

K

s− a

(
1− e−(s−a)T

)
≤ K

s− a

For a proof of the inequalities above compare the areas below the graph of the
functions. It follows that it can not go to infinity as T → ∞, and one can show
using a similar argument that it actually converges.

Inverse Laplace transform. We never actually need to put up a formula for
the inverse of the Laplace transform but we only need to know that its invertible.
Instead we will use a big table together with properties of the Laplace transform to
be able to go backwards from known Laplace transforms. It requires some complex
analysis to understand the inversion formula, but it can be reduces to the fact the
Fourier transform is invertible. The inversion formula is

f(t) = L−1{F}(t) = L−1
s {F (s)}(t) = 1

2πi
lim

T→∞

∫ γ+iT

γ−iT

estF (s) ds,

where the integration if along a line with constant real part Re(s) = γ in the
complex place, provide that F (s) is an analytic function in the half plane Re(s) > γ.
If we make a complex change of variables this can be written

f(t) =
1

2π

∫ +∞

−∞
e(γ+iξ)tF (γ + iξ) dξ = eγtF−1

(
F (γ + iξ)

)
,

i.e. the inverse Fourier transform of the function ξ → F (γ + iξ) multiplied by eγt.
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Last time we showed that:

Ex 1 L{eat} =
1

s− a
, when s > a.

Th 1 L{f ′(t)} = sL{f(t)} − f(0)

Th 2 L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0)

We will now apply these rules to get more Laplace transforms:

Ex 2 L{sin bt} =
b

s2 + b2
, when s > 0.

Sol Using Euler’s formula sin (bt) =
1

2i

(
ebit− e−bit

)
and Ex 1 with a replaced by

ib and −ib we get

L{sin bt} =
1

2i
L{ebit} − 1

2i
L{e−bit} =

1

2i

( 1

s− ib
− 1

s+ ib

)
=

1

2i

s+ ib− (s− ib)

(s+ ib)(s− ib)
=

1

2i

2ib

s2 − (ib)2
=

b

s2 + b2

In the same way, or alternatively using Th 1 one can show that;

Ex 3 L{cos bt} =
s

s2 + b2
, when s > 0.

Ex 4 A converse of Th 1 is also hold:

Th 3 L{tf(t)} = − d

ds
L{f(t)}.

Pf
d

ds
L{f(t)} =

d

ds

∫ ∞

0

e−stf(t) dt =

∫ ∞

0

d

ds
e−stf(t) dt

=

∫ ∞

0

(−t)e−stf(t) dt =

∫ ∞

0

e−st(−t)f(t) dt = L{−tf(t)}.

Ex 5 L{eat sin bt} =
b

(s− a)2 + b2
, L{eat cos bt} =

s− a

(s− a)2 + b2
, when s > a.

Ex 6 L{teat} =
1

(s− a)2
, when s > a.

Sol By Th 3 L{teat} = − d

ds

1

s− a
=

1

(s− a)2
.
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Ex 7 Find the solution of y′′ + y = sin (2t), with initial data y(0) = 2, y′(0) = 1.
Sol Let Y (s) = L{y(t)}. Taking the Laplace transform of the equation using the
formulas in Th 1-2 we get:

L{y′′(t) + y(t)} = L{y′′(t)}+ L{y(t)} = s2Y (s)− sy(0)− y′(0) + Y (s)

= (s2 + 1)Y (s)− 2s− 1 = L{sin (2t)} =
2

s2 + 4

Hence

Y (s) =
1 + 2s

s2 + 1
+

2

(s2 + 1)(s2 + 4)

The inverse Laplace transform of the first part is by previous examples sin t+2 cos t.
For the other part we put up partial fractions:

2

(s2 + 1)(s2 + 4)
=

As+B

s2 + 1
+

Cs+D

s2 + 4

where A,B,C,D are to be determined. If we put the term on a common denomi-
nator again we get

(As+B)(s2 + 4) + (Cs+D)(s2 + 1)

(s2 + 1)(s2 + 4)

=
(A+ C)s3 + (B +D)s2 + (4A+ C)s+ 4B +D

(s2 + 1)(s2 + 4)
=

2

(s2 + 1)(s2 + 4)

Hence A+C = B +D = 4A+C = 0 and 4B +D = 2 which gives A = C = 0 and
3B = 2 so B = 2/3 and D = −2/3. Hence

2

(s2 + 1)(s2 + 4)
=

2

3

1

s2 + 1
− 2

3

1

s2 + 4

so

Y (s) = 2
s

s2 + 1
+

5

3

1

s2 + 1
− 1

3

2

s2 + 4

Hence

y(t) = 2 cos t+
5

3
sin t− 1

3
sin (2t)


