Lecture 17: 6.3-4 Step functions and discontinuous forcing functions. The step function is defined to be

$$
u_{c}(t)= \begin{cases}0, & t<c, \\ 1, & t \geq c\end{cases}
$$

Ex 1 The function $h(t)=u_{3}(t)-u_{5}(t)$ is given by

$$
h(t)= \begin{cases}0, & t<3 \\ 1, & 3 \leq t<5 \\ 0, & t \geq 5\end{cases}
$$

Ex 2 The function

$$
f(t)=\left\{\begin{array}{l}
0, \quad t<2 \\
1, \quad 2 \leq t<3 \\
-1, \quad 3 \leq t<4 \\
0, \quad t \geq 4
\end{array}\right.
$$

can be written with step functions $f(t)=u_{2}(t)-2 u_{3}(t)+u_{4}(t)$.
Ex 3 For $c \geq 0$ we have

$$
\mathcal{L}\left\{u_{c}(t)\right\}=\int_{0}^{\infty} e^{-s t} d t=\int_{c}^{\infty} e^{-s t} d t=-\left.\frac{e^{-s t}}{s}\right|_{t=s} ^{\infty}=\frac{e^{-c s}}{s}
$$

We often want to consider the truncated translate of a function $f(t)$ defined to be

$$
u_{c}(t) f(t-c)= \begin{cases}0, & t<c \\ f(t-c), & t \geq c\end{cases}
$$

The reason we truncated be 0 for $t \leq c$ is that the Laplace transform only used the values of $f(t)$ for $t \geq 0$.
Th1

$$
\mathcal{L}\left\{u_{t}(t) f(t-c)\right\}=e^{-c s} F(s), \quad \text { where } \quad F(s)=\mathcal{L}\{f(t)\}
$$

Pf See book.
We proved last time Th2

$$
\mathcal{L}\left\{e^{c t} f(t)\right\}=F(s-c), \quad \text { where } \quad F(s)=\mathcal{L}\{f(t)\}
$$

Ex 3 Solve

$$
y^{\prime \prime}+y=u_{1}(t)-u_{2}(t), \quad y(0)=y^{\prime}(0)=0
$$

Let $Y(s)=\mathcal{L}\{y(t)\}$ and recall the formula $\mathcal{L}\left\{y^{\prime \prime}(t)\right\}=Y(s)-s y(0)-y^{\prime}(0)$. Taking the Laplace transform of both sides of the equation gives

$$
s^{2} Y(s)+Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

or

$$
Y(s)=\frac{1}{\left(s^{2}+1\right) s}\left(e^{-s}-e^{-2 s}\right)
$$

Using partial fractions

$$
\frac{1}{\left(s^{2}+1\right) s}=\frac{A s+B}{s^{2}+1}+\frac{C}{s}=\frac{(A s+B) s+C\left(s^{2}+1\right)}{\left(s^{2}+1\right) s}
$$

gives $A+C=0, B=0$ and $C=1$ so $A=-1$. Hence

$$
Y(s)=\frac{1}{s}\left(e^{-s}-e^{-2 s}\right)-\frac{s}{s^{2}+1}\left(e^{-s}-e^{-2 s}\right)
$$

Also recalling that

$$
\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=1, \quad \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=\cos t
$$

we get

$$
y(t)=u_{1}(t)-u_{2}(t)-u_{1}(t) \cos (t-1)+u_{2}(t) \cos (t-2)
$$

Ex 4 Solve

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=y^{\prime}(0)=0
$$

where

$$
g(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<5 \\
(t-5) / 5, \quad 5 \leq t<10 \\
1, \quad t \geq 10
\end{array}\right.
$$

We can write

$$
g(t)=\frac{t-5}{5} u_{5}(t)-\frac{t-10}{5} u_{10}(t)
$$

Note that $g(t)=u_{5}(t) f(t-5) / 5-u_{10}(t) f(t-10) / 5$ where $f(t)=t$ and since

$$
\mathcal{L}\{t\}=-\frac{d}{d s} \mathcal{L}\{1\}=-\frac{d}{d s} \frac{1}{s}=\frac{1}{s^{2}} .
$$

we have

$$
\mathcal{L}\{g(t)\}=\frac{1}{5} \frac{e^{-5 s}}{s^{2}}-\frac{1}{5} \frac{e^{-10 s}}{s^{2}}
$$

Hence with $Y(s)=\mathcal{L}\{y(t)\}$ we have

$$
\left(s^{2}+4\right) Y(s)=\frac{1}{5} \frac{e^{-5 s}}{s^{2}}-\frac{1}{5} \frac{e^{-10 s}}{s^{2}}
$$

For rest see example 2 in section 6.4 in the book.

