
Lecture 19: 2.7 Numerical Approximation: Euler’s method. Most differ-
ential equations of the form

(2.7.1)
dy

dt
= f(t, y), y(t0) = y0

can not be solved analytically. Only in special cases like the linear case or the sep-
arable case can we obtain an explicit formula for the solution in terms of integrals.
Still we know from the existence theorem that there is a solution for some time.
We have already seen that we can get some information about how the solution
looks like from the direction field: Given a graph of the direction field we can try to
plot a solution curve that is always tangential to the direction field. However, this
method is not very exact since the direction field is only plotted at a few point and
the curve we try to plot might not pass close to these points. There is however, a
more quantitative numerical version of this method, called Euler’s method or
the tangent line method:

Let us consider how we might approximate a solution curve y = ϕ(t) of (2.7.1),
near t = t0. We know that the solution curve passes through the point (t0, y0) in
the t−y plane and, from (2.7.1) we also know the slop at this point f(t0, y0). Thus
we can write down an equation for the tangent line to the solution curve at (t0, y0):

(2.7.2) y = y0 + f(t0, y0)(t− t0)

The tangent line is a good approximation to the solution curve on a short time
interval. Thus if t1 is close enough to t0 we can approximate ϕ(t1) by

(2.7.3) y1 = y0 + f(t0, y0)(t1 − t0)

To proceed further we can repeat the process. Unfortunately, we do not know the
value ϕ(t1) of the solution at time t1. The best we can do is to use the approximation
y1 instead. Thus we construct a line through (t1, y1) with slope f(t1, y1):

(2.7.3) y = y1 + f(t1, y1)(t− t1)

and we approximate ϕ(t2) at a nearby point t2 by

(2.7.4) y2 = y1 + f(t1, y1)(t2 − t1).

Continuing in this manor we define

yn+1 = yn + f(tn, yn)(tn+1 − tn)

Finally, if we assume that we always take the same small step h in the time direction:

(2.7.5) yn+1 = yn + f(tn, yn)h, tn+1 = tn + h

The values yn are approximations for ϕ(tn), the value of the true solution at the
times tn. We can then approximate the solution curve ϕ(t) by the polygonal
curve consisting of the line segments between the points (tn, yn) and (tn+1, yn+1),
for n = 0, .... This polygonal curve is not exactly the solution curve but the hope
is that it will converge to it as the time step size h → 0.
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Ex Use Euler’s method to approximately find the value y(1) of the solution of

dy

dt
= y, y(0) = 1

Use the step size h = 1/m, and determine how the error decreases with h (the true
solution is e1 ∼ 2.7183)
Sol The general formula is that

(2.7.6) yn+1 = yn + ynh = yn(1 + h), tn+1 = tn + h, t0 = 0, y0 = 1

and hence

(2.7.7) yn = (1 + h)n, tn = nh

If we pick the step size h = 1/m then

ym = (1 + 1/m)m, tm = m · 1/m = 1

We know that
(1 + 1/m)m → e, m → ∞

so we expect it to be a good approximation for small step size. If we put m = 2k,
k = 6, 7, 8 we get

(1 + 1/64)64 ∼ 2.6973.., (1 + 1/128)128 ∼ 2.7077..., (1 + 1/256)256 ∼ 2.71230..

The error is hence in the three cases

0.024..., 0.010..., 0.005...

One can actually check that the error is linear in h i.e. proportional to h, in fact
since 1/256 ∼ 4/1000 = 0.0025 we see that the error is approximately 2h. It is
actually true in general for Euler’s method that the error is linear in h.

Note that in general it is not as easy as above to calculate the numerical approxi-
mation and (2.7.6) does not simplify to something as simple as (2.7.7) but one has
to calculate each step individually. The example above was just meant to illustrate
that the method works.
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2.8 The existence and uniqueness theorem and Picard’s iteration scheme.
As pointed out earlier, most differential equations of the form

(2.8.1)
dy

dt
= f(t, y), y(t0) = y0

can not be solved analytically. Only in special cases like the linear case or the sep-
arable case can we obtain an explicit formula for the solution in terms of integrals.
In general we can however say that there is a local solution in some time interval
t0 − h < t < t0 + h. To prove this one iteratively constructs a sequence of function
and show that the sequence converges to a solution. This is called Picard’s iter-
ation or method of successive approximation. Let us first rewrite (2.8.1) as
an integral equation by integrating it:

(2.8.1) y(t) =

∫ t

t0

f(s, y(s)) ds+ y0

It looks like we solved the problem but the unknown function y is in the integral
in the right hand side so we can not calculate it exactly without the knowledge of
y(t). Therefore we make a successive approximation, starting with y0 and defining

(2.8.2) yn+1 =

∫ t

t0

f(s, yn(s)) ds+ y0, n ≥ 0.

The hope is that the functions yn(t) will converge to a function y(t) that is a
solution of (2.8.1).

Ex Use Picard iteration to find the solution of
dy

dt
= y, y(0) = y0

Sol Let y0 = 1 and

yt = 1 +

∫ t

0

1 ds = 1 + t

and

y2(t) = 1 +

∫ t

0

(1 + s) ds = 1 + t+
t2

2

and so on, in general we obtain:

y3(t) = 1 +

∫ t

0

(
1 + s+

s2

2

)
ds = 1 + t+

t2

2
+

t3

3 · 2
In general we obtain

yn(t) = 1 +
t2

2
+

t3

3 · 2
+ ...+

tn

n!
Using the ratio test we can prove that this converges as n → ∞:

y(t) =

∞∑
k=0

tk

k!

which of course is just the Taylor series for the exponential function et.
Let

T (y)(t) ≡
∫ t

t0

f(s, y(s)) ds+ y0

Then we want to find y such that T (y) = y. We are trying to find y as a limit of
an iteration y0(t) = y0 and for n ≥ 0; yn+1 = T (yn).
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Contractions. A map T : W → W is called a contraction, if for x, y ∈ W :

(1) ∥T (x)− T (y)∥ ≤ K∥x− y∥, K < 1

A point x ∈ W is called a fixed point if T (x) = x. We have:

Lemma. Let T : W0 → W0 be a contraction of a complete normed space W0.
Then T has a unique fixed point x ∈ W0. In fact for any x0 ∈ W0, xk = T k(x0) =
T ◦ · · · ◦ T (x0) (k times) converges to x; ∥x− xk∥ → 0, as k → ∞.

Proof. Using (1) repeatedly we get

(2) ∥xk+1 − xk∥ = ∥T (xk)− T (xk−1)∥ ≤ K∥xk − xk−1∥ ≤ · · · ≤ Kk∥x1 − x0∥

Here ∥x1 − x0∥ = ∥T (x0) − x0∥ = C is a fixed constant. For m > k we write
xm−xk = (xm−xm−1)+(xm−1−xm−2)+ ...+(xk+1−xk) and estimate the norm
of each term by (2):

∥xm − xk∥ ≤ ∥xm − xm−1∥+ · · ·+ ∥xk+1 − xk∥ ≤ (Km−1 + · · ·+Kk−1)C

This is a geometric sum and since K < 1 the infinite sum converges;
∑m−1

ℓ=k−1 K
ℓ ≤∑∞

ℓ=k−1 K
ℓ = Kk−1

∑∞
n=0 K

n = Kk−1/(1−K). Hence

∥xm − xk∥ ≤ ε(N) =
CKN−1

1−K
, if m, k ≥ N,

where ε(N) → 0 as N → ∞, i.e. xk is a Cauchy sequence.
The uniqueness follows from (1); if T (x) = x and T (y) = y then ∥x − y∥ =

∥T (x)−T (y)∥ ≤ K∥x− y∥ and since K < 1 it follows that ∥x− y∥=0 so x=y. �
In the application to the differential equation the norm is ∥f∥ = maxt0≤t≤t0+δ |f(t)|.
However, we will show how the idea of contractions works in a simpler case:
Ex. Find an approximation for

√
2. Let

g(x) =
x2 + 2

2x

Then
√
2 is a fixed point for g(x); g(

√
2) =

√
2. We claim that it is a contraction

of the set W0 = {x;x ≥ 1}:

(3) |g(x)− g(y)| ≤ 1

2
|x− y|, if x, y ≥ 1

and g(x) ≥ 1 if x ≥ 1. Therefore, by the above lemma, if we set x0 = 1 and

xn+1 = g(xn), for n ≥ 0 then xn →
√
2, as n → ∞. In fact,

x0 = 1, x1 = 1.5, x2 = 1.41667..., x3 = 1.41422..., · · ·

To prove (3) we note that |g′(s)| = |1/2− 1/s2| ≤ 1/2, if |s| ≥ 1 and hence

|g(x)− g(y)| =
∣∣∣ ∫ x

y

g′(s) ds
∣∣∣ ≤ ∫ x

y

|g′(s)|ds ≤ |x− y|
2

, if x ≥ y ≥ 1.


