
Lecture 2: Section 1.2 Analytical solution of the simple models. We can
actually solve the mice-owl model (1.1.3) analytically:

(1.2.1)
dp

dt
= 0.5p− 450

The general idea is that we will try to rewrite it as a an equation of the form

(1.2.2)
d

dt
G(t, p(t)) = f(t),

that we can solve simply by integrating. If we rewrite our equation (1.2.1) as

(1.2.3)
dp/dt

p− 900
=

1

2

we see that by the chain rule for derivatives

d

dt
G(p(t)) = G′(p(t))

dp(t)

dt

we get

(1.2.4)
d

dt
ln |p− 900| = 1

2

which is of the form (1.2.2). Integrating (1.2.4) gives

ln |p− 900| = t

2
+ C

or after integration:
|p− 900| = eCet/2

i.e.
p− 900 = ±eCet/2 = cet/2

where c = ±eC , i.e.
p = 900 + cet/2

The constant c will be determined by initial conditions: If p(0) = 850, then −50 =
p−900 = ce0, so p = 950−50et/2 which is indeed decreasing fast towards 0 Similarly
if p(0) = 950, then 50 = p−900 = ce0 so p = 900+50et/2, which is indeed increasing
fast towards infinity. A similar calculation for the first model gives

v = 49 + ce−t/5

from which we also see that as t→∞ any initial state tend to the equilibrium v=49.
As we shall see in section 2.1, this calculation gives that the general solutions to

(1.2.1)
dy

dt
= ay − b,

is given by
y = b/a+ ceat,

where the constant c is determined by satisfying an initial condition y(0) = y0
1



2

1.3 Types of differential equations. An ordinary differential equation is
a an equation with derivatives of the unknown with respect one variable only, e.g.
the time time. We have seen two examples of this in the previous sections:

(1.3.1)
dv

dt
= 9.8− v

5
,

dp

dt
= 0.5p− 450

Another example is the equation for the displacement u(t) from equilibrium of
weight hanging in a spring under the influence of gravity:

(1.3.2) mu′′(t) + ku(t) = 0.

where k is the spring constant. The order of a differential equation is the highest
order of derivatives in the equation, so e.g. the order of (1.3.1) is one and the order
of (1.3.2) is two. A general n th order differential equation is of the form

F
(
t, u(t), u′(t), . . . , u(n)(t)

)
= 0.

A special case are the so called linear equations

a0(t)u
(n)(t) + a1(t)u

(n−1)(t) + · · ·+ an(t)u(t) = g(t).

The equations (1.3.1)-(1.3.3) are linear equations. A nonlinear equation for
population growth is given by the logistic equation

(1.3.5)
dp

dt
= (r − ap)p

taking into account that the food supply is limited. Another nonlinear equation is
that of the displacement angle θ of an oscillating pendulum

(1.3.6)
d2θ

dt2
+

g

L
sin θ = 0

Note however that for small displacement angles we can approximate sin θ ∼ θ in
which case we get a linear equation:

(1.3.7)
d2θ

dt2
+

g

L
θ = 0

This is called linearization.
A partial differential equation is an equation containing partial derivatives

with respect to more than one variable, e.g. the wave equation,

(1.3.3)
∂2u

∂t2
= c2

∂2u

∂x2

describing the displacement u(t, x) of a guitar string from equilibrium along its
length 0 ≤ x ≤ L.

We further consider systems of differential equations, e.g. the Lotka-Volterra,
predator-prey equation

(1.3.4)
dx/dt = ax− αxy,

dy/dt = −cy + γxy

where x(t) and y(t) describes the respective populations of prey and predator.


