Lecture 2: Section 1.2 Analytical solution of the simple models. We can actually solve the mice-owl model (1.1.3) analytically:

$$
\begin{equation*}
\frac{d p}{d t}=0.5 p-450 \tag{1.2.1}
\end{equation*}
$$

The general idea is that we will try to rewrite it as a an equation of the form

$$
\begin{equation*}
\frac{d}{d t} G(t, p(t))=f(t) \tag{1.2.2}
\end{equation*}
$$

that we can solve simply by integrating. If we rewrite our equation (1.2.1) as

$$
\begin{equation*}
\frac{d p / d t}{p-900}=\frac{1}{2} \tag{1.2.3}
\end{equation*}
$$

we see that by the chain rule for derivatives

$$
\frac{d}{d t} G(p(t))=G^{\prime}(p(t)) \frac{d p(t)}{d t}
$$

we get

$$
\begin{equation*}
\frac{d}{d t} \ln |p-900|=\frac{1}{2} \tag{1.2.4}
\end{equation*}
$$

which is of the form (1.2.2). Integrating (1.2.4) gives

$$
\ln |p-900|=\frac{t}{2}+C
$$

or after integration:

$$
|p-900|=e^{C} e^{t / 2}
$$

i.e.

$$
p-900= \pm e^{C} e^{t / 2}=c e^{t / 2}
$$

where $c= \pm e^{C}$, i.e.

$$
p=900+c e^{t / 2}
$$

The constant c will be determined by initial conditions: If $p(0)=850$, then $-50=$ $p-900=c e^{0}$, so $p=950-50 e^{t / 2}$ which is indeed decreasing fast towards 0 Similarly if $p(0)=950$, then $50=p-900=c e^{0}$ so $p=900+50 e^{t / 2}$, which is indeed increasing fast towards infinity. A similar calculation for the first model gives

$$
v=49+c e^{-t / 5}
$$

from which we also see that as $t \rightarrow \infty$ any initial state tend to the equilibrium $v=49$. As we shall see in section 2.1, this calculation gives that the general solutions to

$$
\begin{equation*}
\frac{d y}{d t}=a y-b \tag{1.2.1}
\end{equation*}
$$

is given by

$$
y=b / a+c e^{a t}
$$

where the constant c is determined by satisfying an initial condition $y(0)=y_{0}$
1.3 Types of differential equations. An ordinary differential equation is a an equation with derivatives of the unknown with respect one variable only, e.g. the time time. We have seen two examples of this in the previous sections:

$$
\begin{equation*}
\frac{d v}{d t}=9.8-\frac{v}{5}, \quad \frac{d p}{d t}=0.5 p-450 \tag{1.3.1}
\end{equation*}
$$

Another example is the equation for the displacement $u(t)$ from equilibrium of weight hanging in a spring under the influence of gravity:

$$
\begin{equation*}
m u^{\prime \prime}(t)+k u(t)=0 \tag{1.3.2}
\end{equation*}
$$

where k is the spring constant. The order of a differential equation is the highest order of derivatives in the equation, so e.g. the order of (1.3.1) is one and the order of (1.3.2) is two. A general nth order differential equation is of the form

$$
F\left(t, u(t), u^{\prime}(t), \ldots, u^{(n)}(t)\right)=0
$$

A special case are the so called linear equations

$$
a_{0}(t) u^{(n)}(t)+a_{1}(t) u^{(n-1)}(t)+\cdots+a_{n}(t) u(t)=g(t) .
$$

The equations (1.3.1)-(1.3.3) are linear equations. A nonlinear equation for population growth is given by the logistic equation

$$
\begin{equation*}
\frac{d p}{d t}=(r-a p) p \tag{1.3.5}
\end{equation*}
$$

taking into account that the food supply is limited. Another nonlinear equation is that of the displacement angle θ of an oscillating pendulum

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin \theta=0 \tag{1.3.6}
\end{equation*}
$$

Note however that for small displacement angles we can approximate $\sin \theta \sim \theta$ in which case we get a linear equation:

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \tag{1.3.7}
\end{equation*}
$$

This is called linearization.
A partial differential equation is an equation containing partial derivatives with respect to more than one variable, e.g. the wave equation,

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1.3.3}
\end{equation*}
$$

describing the displacement $u(t, x)$ of a guitar string from equilibrium along its length $0 \leq x \leq L$.

We further consider systems of differential equations, e.g. the Lotka-Volterra, predator-prey equation

$$
\begin{align*}
d x / d t & =a x-\alpha x y, \\
d y / d t & =-c y+\gamma x y \tag{1.3.4}
\end{align*}
$$

where $x(t)$ and $y(t)$ describes the respective populations of prey and predator.

