Lecture 2: Section 1.2 Analytical solution of the simple models. We can
actually solve the mice-owl model (1.1.3) analytically:

dp
1.2.1 = = 0.5p — 450
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The general idea is that we will try to rewrite it as a an equation of the form

d
(122 Gt p(t) = (1),
that we can solve simply by integrating. If we rewrite our equation (1.2.1) as
dp/dt 1
(1.2.3) p/dt _ 1
p—900 2

we see that by the chain rule for derivatives

9 6) = ¢ () T
we get
(1.2.4) %111 lp — 900| = %

which is of the form (1.2.2). Integrating (1.2.4) gives
t
In[p —900| = §+C’

or after integration:
|p —900| = eCet/?

ie.
p—900 = +eCet/? = cet/?

where ¢ = +e, i.e.
p = 900 + ce/?

The constant ¢ will be determined by initial conditions: If p(0) = 850, then —50 =
p—900 = ce?, so p = 950—50e!/2 which is indeed decreasing fast towards 0 Similarly
if p(0) = 950, then 50 = p—900 = ce’ so p = 900450e/2, which is indeed increasing
fast towards infinity. A similar calculation for the first model gives

v =49 + ce /5

from which we also see that as t — oo any initial state tend to the equilibrium v=49.
As we shall see in section 2.1, this calculation gives that the general solutions to
dy
1.2.1 — =ay — b,
(1.2.1) ik
is given by
y="b/a+ ce™,

where the constant ¢ is determined by satisfying an initial condition y(0) = yq
1



1.3 Types of differential equations. An ordinary differential equation is
a an equation with derivatives of the unknown with respect one variable only, e.g.
the time time. We have seen two examples of this in the previous sections:

dv v dp

1.3.1 — =9.8— —, — = 0.5p — 450

(1.3.1) dt 5 dt O F
Another example is the equation for the displacement w(t) from equilibrium of
weight hanging in a spring under the influence of gravity:

(1.3.2) mu (t) + ku(t) = 0.

where k is the spring constant. The order of a differential equation is the highest
order of derivatives in the equation, so e.g. the order of (1.3.1) is one and the order
of (1.3.2) is two. A general n th order differential equation is of the form

F(t,u(t), ' (t),...,u™(t) =0.
A special case are the so called linear equations
ao(t)u'™ () + a1 (H)u" "V () + - + an ()u(t) = g(t).

The equations (1.3.1)-(1.3.3) are linear equations. A nonlinear equation for
population growth is given by the logistic equation

dp
dt
taking into account that the food supply is limited. Another nonlinear equation is
that of the displacement angle 6 of an oscillating pendulum
a0 g .

Note however that for small displacement angles we can approximate sinf ~ 6 in
which case we get a linear equation:

d’0 g

1.3. — 4+ =
(1.3.7) dt2+L

(1.3.5) = (r—ap)p

=0

This is called linearization.
A partial differential equation is an equation containing partial derivatives
with respect to more than one variable, e.g. the wave equation,
0%u 0%u
(1.3.3) — =’
ot? Ox?
describing the displacement u(t,x) of a guitar string from equilibrium along its
length 0 < x < L.
We further consider systems of differential equations, e.g. the Lotka-Volterra,
predator-prey equation
dx/dt = ax — azxy,

1.3.4
( ) dy/dt = —cy + yzy

where z(t) and y(t) describes the respective populations of prey and predator.



