Lecture 20: 7.1 Systems of first order differential equations. A second
order equation can always be written as a first order system:
Ex The equation of a spring v’ + ky = 0 can be written with 1 = y and x5 = ¥/':

First order systems also show up naturally not coming from a higher order equation:
Ex Consider two interconnected tanks that contain water with a certain amount
of salt (J1 respectively Q2 oz of salt. Suppose tank one contain 60 gal of water and
tank two 100 gal. Suppose the water containing ¢; oz of salt per gal flows in to
tank one at a rate of 3 gallons per min and gs oz of salt per gal flows in to tank
two at a rate of 1 gallons per min. Suppose also that 4 gal per min flows out of
tank one half of which flows in to tank two while the remainder leaves the system
and 3 gal per min flows out of tank two, of which 1 gallon flows into tank one, and
the rest leaves the system. The system of equations describing this is

Q1 = 3q1 + Q2/100 — 4Q1 /60

Qb = g2 + 2Q1/60 — 3Q2/100
One could attempt to rewrite this as a second order equation for one unknown only
Q = a1 + bQ-, but instead we will learn methods to directly solve systems.

A general first order 2 x 2 system of differential equations can be written

xll :Fl(tvxlva) l‘&(to) ZJJ?

ah = Fo(t, w1, 22) zh(to) = 9

or if we introduce vector notation

we can write this in a more concise form:
/
x = F(t,x), x(tg) = Xo-

The same methods uses for one equations works to show that we have existence for
the 2 x 2 system. Using Euler’s method:

Xn4+1 = Xn + F(tnaxn)(tn—i—l - tn)7 tn =to + nh7 n > 07

gives and approximation for x(t,) ~ x,. Alternatively, as before we can also prove
existence with successive approximation

t
x0(t) = X, Xn+1(t) = Xo +/ F(s,x,(s))ds, n>0.

to



7.2 (2x2) Linear systems with constant coefficients. We first consider a ho-
mogeneous 2 x 2 constant coefficient linear system of differential equations:

/
Ty = @111 + 41222
(7.1.1) ,
Ty = A2171 -+ a22X2

Let us first consider a 2 x 2 linear system of algebraic equations

a11T1 + 1222 =
(7.1.2)
a21T1 + G22T2 = Y2

We will write this system in matrix form. Let A be the 2 x 2 matrix

i.e. a collection of 2 x 2 entries A = (a;5), ¢, = 1,2, and let x be the 2 vector

[ml}

X = :

T2

We define the product of the 2 x 2 matrix A by the 2 vector x to be the 2 vector

(7.1.3) Ax — [an CL12} [331] _ {anm +a21x2] _ [an] o1+ {212] -
2

az1 a22 ) a2121 + A22%9 a21 2

i.e. the vector whose first component is the dot product (aii,ai2) - (z1,22) =
a11T1 + a12xo of the first row of A and x and whose second component is the dot
product (as1,as2) - (z1,22) = a11x1 + ajaxe of the second row of A and x. As
indicated above; another way to see this matrix product is as a linear combination
of the column vectors: Ax = [a; as|x = ajx; + asws. If

=

the algebraic system (7.1.2) can then be written
Ax =y

and the system of differential equations (7.1.1) can be written
x = Ax

Any 2 x 2 matrix A determines a linear map

R?>x — Ax € R?

Conversely, every linear map is given by matrix multiplication. If B is another 2 x 2

matrix
bi1 b2
B =
[b21 5221 ’



then multiplication first by B and then A
multiply by B Bx multiply by A A(BX)

defines a linear map R? > x — A(Bx) € R?. This linear map corresponds to multi-
plying by some matrix. The matrix product AB is constructed so that multiplying
by the matrix AB

multiply by AB

x (AB)x
is the same as first multiplying by B and then by A, i.e. (AB)x = A(Bx).
If A and B are 2 x 2 matrices then the product AB is the 2 x 2 matrix
ain a2 | | b1 b1 a11b11 + a12bo1  a11b12 + ai2bao
(714)  AB= [021 Gzz} {521 522} B |:a21b11 + ageba1  a21b12 + azbaz
i.e. the entry in the ith row and j th column of AB is the dot product between
the ith row of A and the jth column of B: a;1b1; + a;2b2;. One can see the matrix
product in terms of the column picture, if B = [by bs] then AB = [Ab; Abs], i.e
if by, by are the column vectors of B then Abq, Ab; are the column vectors of AB.

Ex1 [ } — {0 _1} {xl} = [_ 2] rotates vectors an angle 7/2 counterclockwise.
T2 T2 T
3.1,‘1
} o s[5 [an
Ex 3 O _1 = 0 =31 @ = 32 scales and rotates.
1’2 3 0 i) 31}1
These maps are all 1nvert1b1e However a projection is not:

o [n)o[s b)) [5)

Usually AB=# BA. The 2x2 identity matrix I is given by
1 0]
o1
Multiplying with it is similar to multiplying by 1:
. 1 0 1| | *1 | .
= o 1] 2] = [2] >
An 2 x 2 matrix is called invertible if there is an n x n matrix A~! such that
AA P =A"1A=1
It turns out that the algebraic system (7.1.2) can be solved only if the determinant

scales vectors by a factor 3.

a12
det A = = Q11092 — A12G
o1 G 11022 12021

is nonvanishing. In that case A has an inverse given by

a22 a12

- 1 a2 —ai12 det A detA

7.1.5 Al = -
( ) det A {—agl al Qg ay

det A det A

In fact by (7.1.4)
A_IA: 1 |:a22 —CL12} {611 Cl12]

det A | —a21 an as1 a2

_ 1 laxa —azan 0 I S
 det A 0 —a91a12 +ajran | |0 1|




Furthermore, if det A # 0 then the linear algebraic system has a unique solution:
Ax=b < A 'Ax=A4""D & x=Ix=A"'b

If det A # 0 then the homogeneous problem b = 0, only has the trivial solution
x =A"'0=0: But if det A = 0, then the homogeneous problem has a nontrivial
solution x # 0 and the inhomogeneous problem, b % 0, might not have any solution.

Ex 1 Solve the system
xr1 + 33)2 =5

229 +4x9 =6

Sol The system can be written in matrix form
1 3 X1 | 5
2 4 i) N 6
1317 1 4 -3 [-2 3/2
2 4 S 1-4-3-2|-2 1| |2 -1/2

-0 ARG

Ex 2 Solve the system

By (7.1.5)

Hence

1’1—}—2(1)2:5
2.’171 —|—4.’L‘2:6

Sol Since the determinant of the system vanishes

‘12

9 4‘:1-4—2-2:0

the inverse does not exist. Subtracting twice the first equation from the second

gives the equivalent system:
xr1 + 21‘2 =5

0=—-4

The second equation can not hold so the system has no solutions.

Ex 3 Solve the system
xr1 + 2.’12‘2 =0

2.(131 + 433'2 =0

Sol Subtracting twice the first equation from the second gives the equivalent system:
1+ 2x9 =0
0=0

The second equation always hold and the first equations has a whole line of solu-
tions, if we put x92 equal to a parameter o we get

1| | 20| -2 ‘
o= a | =% 1| or any «



