Lecture 20: 7.1 Systems of first order differential equations. A second order equation can always be written as a first order system:
Ex The equation of a spring $y^{\prime \prime}+k y=0$ can be written with $x_{1}=y$ and $x_{2}=y^{\prime}$:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-k x_{1}
\end{aligned}
$$

First order systems also show up naturally not coming from a higher order equation: Ex Consider two interconnected tanks that contain water with a certain amount of salt Q_{1} respectively Q_{2} oz of salt. Suppose tank one contain 60 gal of water and tank two 100 gal. Suppose the water containing q_{1} oz of salt per gal flows in to tank one at a rate of 3 gallons per min and q_{2} oz of salt per gal flows in to tank two at a rate of 1 gallons per min. Suppose also that 4 gal per min flows out of tank one half of which flows in to tank two while the remainder leaves the system and 3 gal per min flows out of tank two, of which 1 gallon flows into tank one, and the rest leaves the system. The system of equations describing this is

$$
\begin{aligned}
Q_{1}^{\prime} & =3 q_{1}+Q_{2} / 100-4 Q_{1} / 60 \\
Q_{2}^{\prime} & =q_{2}+2 Q_{1} / 60-3 Q_{2} / 100
\end{aligned}
$$

One could attempt to rewrite this as a second order equation for one unknown only $Q=a Q_{1}+b Q_{2}$, but instead we will learn methods to directly solve systems.

A general first order 2×2 system of differential equations can be written

$$
\begin{array}{ll}
x_{1}^{\prime}=F_{1}\left(t, x_{1}, x_{2}\right) \\
x_{2}^{\prime}=F_{2}\left(t, x_{1}, x_{2}\right)^{\prime} & x_{1}^{\prime}\left(t_{0}\right)=x_{1}^{0} \\
x_{2}^{\prime}\left(t_{0}\right)=x_{2}^{0}
\end{array}
$$

or if we introduce vector notation

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{x}^{\prime}=\binom{x_{1}^{\prime}}{x_{2}^{\prime}}, \quad \mathbf{F}=\binom{F_{1}}{F_{2}}, \quad \mathbf{x}_{0}=\binom{x_{1}^{0}}{x_{2}^{0}}
$$

we can write this in a more concise form:

$$
\mathbf{x}^{\prime}=\mathbf{F}(t, \mathbf{x}), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} .
$$

The same methods uses for one equations works to show that we have existence for the 2×2 system. Using Euler's method:

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\mathbf{F}\left(t_{n}, \mathbf{x}_{n}\right)\left(t_{n+1}-t_{n}\right), \quad t_{n}=t_{0}+n h, \quad n \geq 0
$$

gives and approximation for $\mathbf{x}\left(t_{n}\right) \approx \mathbf{x}_{n}$. Alternatively, as before we can also prove existence with successive approximation

$$
\mathbf{x}_{0}(t)=\mathbf{x}_{0}, \quad \mathbf{x}_{n+1}(t)=\mathbf{x}_{0}+\int_{t_{0}}^{t} \mathbf{F}\left(s, \mathbf{x}_{n}(s)\right) d s, \quad n \geq 0 .
$$

7.2 (2x2) Linear systems with constant coefficients. We first consider a homogeneous 2×2 constant coefficient linear system of differential equations:

$$
\begin{align*}
x_{1}^{\prime} & =a_{11} x_{1}+a_{12} x_{2} \\
x_{2}^{\prime} & =a_{21} x_{1}+a_{22} x_{2} \tag{7.1.1}
\end{align*}
$$

Let us first consider a 2×2 linear system of algebraic equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=y_{1} \tag{7.1.2}\\
& a_{21} x_{1}+a_{22} x_{2}=y_{2}
\end{align*}
$$

We will write this system in matrix form. Let A be the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right],
$$

i.e. a collection of 2×2 entries $A=\left(a_{i j}\right), i, j=1,2$, and let \mathbf{x} be the 2 vector

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

We define the product of the 2×2 matrix A by the 2 vector \mathbf{x} to be the 2 vector

$$
A \mathbf{x}=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{7.1.3}\\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{21} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] x_{1}+\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] x_{2}
$$

i.e. the vector whose first component is the dot product $\left(a_{11}, a_{12}\right) \cdot\left(x_{1}, x_{2}\right)=$ $a_{11} x_{1}+a_{12} x_{2}$ of the first row of A and \mathbf{x} and whose second component is the dot product $\left(a_{21}, a_{22}\right) \cdot\left(x_{1}, x_{2}\right)=a_{11} x_{1}+a_{12} x_{2}$ of the second row of A and \mathbf{x}. As indicated above; another way to see this matrix product is as a linear combination of the column vectors: $A \mathbf{x}=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right] \mathbf{x}=\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}$. If

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

the algebraic system (7.1.2) can then be written

$$
A \mathrm{x}=\mathrm{y}
$$

and the system of differential equations (7.1.1) can be written

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

Any 2×2 matrix A determines a linear map

$$
\mathbf{R}^{2} \ni \mathbf{x} \rightarrow A \mathbf{x} \in \mathbf{R}^{2}
$$

Conversely, every linear map is given by matrix multiplication. If B is another 2×2 matrix

$$
B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right],
$$

then multiplication first by B and then A

$$
\mathbf{x} \xrightarrow{\text { multiply by } B} B \mathbf{x} \xrightarrow{\text { multiply by } A} A(B \mathbf{x})
$$

defines a linear map $\mathbf{R}^{2} \ni \mathbf{x} \rightarrow A(B \mathbf{x}) \in \mathbf{R}^{2}$. This linear map corresponds to multiplying by some matrix. The matrix product $A B$ is constructed so that multiplying by the matrix $A B$

$$
\mathbf{x} \xrightarrow{\text { multiply by } A B}(A B) \mathbf{x}
$$

is the same as first multiplying by B and then by A, i.e. $(A B) \mathbf{x}=A(B \mathbf{x})$.
If A and B are 2×2 matrices then the product $A B$ is the 2×2 matrix

$$
A B=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{7.1.4}\\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

i.e. the entry in the i th row and j th column of $A B$ is the dot product between the i th row of A and the j th column of $B: a_{i 1} b_{1 j}+a_{i 2} b_{2 j}$. One can see the matrix product in terms of the column picture, if $B=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]$ then $A B=\left[A \mathbf{b}_{1} A \mathbf{b}_{2}\right]$, i.e. if $\mathbf{b}_{1}, \mathbf{b}_{1}$ are the column vectors of B then $A \mathbf{b}_{1}, A \mathbf{b}_{1}$ are the column vectors of $A B$. Ex $\mathbf{1}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{1}\end{array}\right]$ rotates vectors an angle $\pi / 2$ counterclockwise.
Ex $2\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 x_{1} \\ 3 x_{2}\end{array}\right]$ scales vectors by a factor 3 .
Ex 3 $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-3 x_{2} \\ 3 x_{1}\end{array}\right]$ scales and rotates.
These maps are all invertible. However a projection is not:
$\operatorname{Ex} 4\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$
Usually $A B \neq B A$. The 2×2 identity matrix I is given by

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Multiplying with it is similar to multiplying by 1 :

$$
I \mathbf{x}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{x}
$$

An 2×2 matrix is called invertible if there is an $n \times n$ matrix A^{-1} such that

$$
A A^{-1}=A^{-1} A=I
$$

It turns out that the algebraic system (7.1.2) can be solved only if the determinant

$$
\operatorname{det} A=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

is nonvanishing. In that case A has an inverse given by

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \tag{7.1.5}\\
-a_{21} & a_{11}
\end{array}\right]=\left[\begin{array}{cc}
\frac{a_{22}}{\operatorname{det} A} & -\frac{a_{12}}{\operatorname{det} A} \\
-\frac{a_{21}}{\operatorname{det} A} & \frac{a_{11}}{\operatorname{det} A}
\end{array}\right]
$$

In fact by (7.1.4)

$$
\begin{aligned}
& A^{-1} A=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
&=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} a_{11}-a_{12} a_{21} & 0 \\
0 & -a_{21} a_{12}+a_{11} a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Furthermore, if $\operatorname{det} A \neq 0$ then the linear algebraic system has a unique solution:

$$
A \mathbf{x}=\mathbf{b} \quad \Leftrightarrow \quad A^{-1} A \mathbf{x}=A^{-1} \mathbf{b} \quad \Leftrightarrow \quad \mathbf{x}=I \mathbf{x}=A^{-1} \mathbf{b}
$$

If $\operatorname{det} A \neq 0$ then the homogeneous problem $\mathbf{b}=\mathbf{0}$, only has the trivial solution $\mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}$: But if $\operatorname{det} A=0$, then the homogeneous problem has a nontrivial solution $\mathbf{x} \neq \mathbf{0}$ and the inhomogeneous problem, $\mathbf{b} \neq \mathbf{0}$, might not have any solution.

Ex 1 Solve the system

$$
\begin{array}{r}
x_{1}+3 x_{2}=5 \\
2 x_{2}+4 x_{2}=6
\end{array}
$$

Sol The system can be written in matrix form

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

By (7.1.5)

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]^{-1}=\frac{1}{1 \cdot 4-3 \cdot 2}\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 / 2 \\
2 & -1 / 2
\end{array}\right]
$$

Hence

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 / 2 \\
1 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Ex 2 Solve the system

$$
\begin{array}{r}
x_{1}+2 x_{2}=5 \\
2 x_{1}+4 x_{2}=6
\end{array}
$$

Sol Since the determinant of the system vanishes

$$
\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=1 \cdot 4-2 \cdot 2=0
$$

the inverse does not exist. Subtracting twice the first equation from the second gives the equivalent system:

$$
\begin{aligned}
x_{1}+2 x_{2} & =5 \\
0 & =-4
\end{aligned}
$$

The second equation can not hold so the system has no solutions.
Ex 3 Solve the system

$$
\begin{array}{r}
x_{1}+2 x_{2}=0 \\
2 x_{1}+4 x_{2}=0
\end{array}
$$

Sol Subtracting twice the first equation from the second gives the equivalent system:

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
0 & =0
\end{aligned}
$$

The second equation always hold and the first equations has a whole line of solutions, if we put x_{2} equal to a parameter α we get

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \alpha \\
\alpha
\end{array}\right]=\alpha\left[\begin{array}{c}
-2 \\
1
\end{array}\right], \quad \text { for any } \quad \alpha
$$

