Lecture 24: 7.6 Complex eigenvalues.

Ex Find the solution to the system

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { where } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Sol 1 First we want to find the eigenvalues r and eigenvectors $\boldsymbol{\xi} \neq 0$:

$$
\begin{equation*}
A \boldsymbol{\xi}=r \boldsymbol{\xi} \quad \Leftrightarrow \quad(A-r I) \boldsymbol{\xi}=\mathbf{0} . \tag{7.6.1}
\end{equation*}
$$

The eigenvalues are solution of the characteristic equation:
$0=\operatorname{det}(A-r I)=\left|\begin{array}{cc}-1-r & -2 \\ 2 & -1-r\end{array}\right|=(-1-r)^{2}+2^{2}=(-1-r-2 i)(-1-r+2 i)$
so the eigenvalues are $r_{1}=-1-2 i$ and $r_{2}=-1+2 i$, where $i=\sqrt{-1}$.
If $r=r_{1}=1-2 i$ then (7.6.1) becomes

$$
\left(A-r_{1} I\right) \boldsymbol{\xi}=\left[\begin{array}{rr}
2 i & -2 \\
2 & 2 i
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow \begin{aligned}
& 2 i \xi_{1}-2 \xi_{2}=0 \\
& 2 \xi_{1}+2 i \xi_{2}=0
\end{aligned} \Leftrightarrow \Leftrightarrow \begin{aligned}
& \xi_{1}=\alpha \\
& \xi_{2}=\alpha i
\end{aligned} ; \quad \boldsymbol{\xi}^{(1)}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

If $r=r_{2}=1+2 i$ then (7.6.1) becomes
$\left(A-r_{2} I\right) \boldsymbol{\xi}=\left[\begin{array}{cc}-2 i & -2 \\ 2 & -2 i\end{array}\right]\left[\begin{array}{l}\xi_{1} \\ \xi_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Leftrightarrow \begin{gathered}-2 i \xi_{1}-2 \xi_{2}=0 \\ 2 \xi_{1}-2 i \xi_{2}=0\end{gathered} \Leftrightarrow \begin{gathered}\xi_{1}=\beta \\ \xi_{2}=-\beta i\end{gathered} ; \quad \boldsymbol{\xi}^{(2)}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$
Then for any complex constants c_{1} and c_{2}

$$
\mathbf{x}=c_{1} e^{r_{1} t} \boldsymbol{\xi}^{(1)}+c_{2} e^{r_{2} t} \boldsymbol{\xi}^{(2)}
$$

is a solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. In fact, then

$$
\mathbf{x}^{\prime}=r_{1} c_{1} e^{r_{1} t} \boldsymbol{\xi}^{(1)}+r_{2} c_{2} e^{r_{2} t} \boldsymbol{\xi}^{(2)}
$$

and

$$
A \mathbf{x}=c_{1} e^{r_{1} t} A \boldsymbol{\xi}^{(1)}+c_{2} e^{r_{1} t} A \boldsymbol{\xi}^{(2)}=c_{1} e^{r_{1} t} r_{1} \boldsymbol{\xi}^{(1)}+c_{2} e^{r_{1} t} r_{2} \boldsymbol{\xi}^{(2)} .
$$

Since $\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)}$ are not parallel they form a basis and we can find c_{1} and c_{2} so that

$$
\mathbf{x}(0)=c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}
$$

In fact

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
i
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \quad \Leftrightarrow \quad \begin{gathered}
c_{1}+c_{2}=a \\
i c_{1}-i c_{2}=b
\end{gathered} \Leftrightarrow \quad \Leftrightarrow \begin{gathered}
c_{1}=(a-i b) / 2 \\
c_{2}=(a+i b) / 2
\end{gathered}
$$

and hence

$$
\mathbf{x}=\frac{a-i b}{2} e^{-t-2 i t}\left[\begin{array}{l}
1 \tag{7.6.2}\\
i
\end{array}\right]+\frac{a+i b}{2} e^{-t+2 i t}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

This is real if a, b are real, as can be seen using Euler's formulas $e^{2 i t}=\cos 2 t+i \sin 2 t$.
Sol 2 Since A is real it follows that if r is an eigenvalue with eigenvector $\boldsymbol{\xi}$ then the complex conjugate of the eigenvalue \bar{r} is also an eigenvalue with complex conjugate eigenvector $\overline{\boldsymbol{\xi}}$. In fact taking the complex conjugate of $A \boldsymbol{\xi}=r \boldsymbol{\xi}$ gives $A \overline{\boldsymbol{\xi}}=\bar{r} \overline{\boldsymbol{\xi}}$.
Since $e^{r t} \boldsymbol{\xi}$ is a solution it follows that the complex conjugate $e^{\bar{r} t} \overline{\boldsymbol{\xi}}$ is a solution and so are the real and imaginary parts $\mathbf{u}=\left(e^{r t} \boldsymbol{\xi}+e^{\bar{r} t} \overline{\boldsymbol{\xi}}\right) / 2$ and $\mathbf{v}=\left(e^{r t} \boldsymbol{\xi}-e^{\bar{r} t} \overline{\boldsymbol{\xi}}\right) / 2 i$. Writing $\boldsymbol{\xi}=\mathbf{a}+i \mathbf{b}$ and $r=\lambda+i \mu$ we get after some work two real solutions

$$
\begin{gathered}
\mathbf{u}=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
\mathbf{v}=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{gathered}
$$

and any solution can be written as

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{u}+c_{2} \mathbf{v} \tag{7.6.3}
\end{equation*}
$$

Note that in (7.6.2) $\mathbf{x} \rightarrow \mathbf{0}$, as $t \rightarrow \infty$, so $\mathbf{0}$ is a stable equilibrium. In fact this follows since the real part of the eigenvalues are negative.

