
Lecture 26: 7.7 The exponential matrix.
We will now find a nice way to the express the solution to the system

(7.7.1) x′ = Ax,

where A is a 2×2 matrix, analogous to the formula for the solution of one equation.
We can find two solutions to (7.7.1); x1(t) and x2(t) satisfying the initial conditions

(7.7.2) x1(0) =

[
1
0

]
, x2(0) =

[
0
1

]
Using these two solutions we can express any solution

(7.7.3) x = ax1 + bx2

where the constants a and b are determined by the initial condition:

(7.7.4) x(0) = a

[
1
0

]
+ b

[
0
1

]
=

[
a
b

]
Let Φ(t) be the 2× 2 matrix with columns the 2 vectors x1(t) and x2(t):

(7.7.5) Φ = [x1 x2 ] =

[
x11 x12

x21 x22

]
, where x1 =

[
x11

x21

]
, x2 =

[
x12

x22

]
Then in view of the definition of matrix multiplication, (7.7.3) can be written

(7.7.6) x(t) = [x1 x2 ]

[
a
b

]
= Φ(t)x(0)

Now, suppose x1 and x2 form a fundamental solution set but do not satisfy the
initial conditions (7.7.2). The we can still write any solution |boldx in the form
(7.7.3) although the constants a and b can not be as easily determined from the
initial condition as in (7.7.4). However, if we form Ψ = [x1 x2 ] we can still write
x(t) = Ψ(t) [ a b ] but we must solve x(0) = Ψ(0) [ a b ], i.e [ a b ] = Ψ(0)−1x(0)
so in that case x(t) = Ψ(t)Ψ(0)−1x(0).
(7.7.6) means that when we calculated Φ(t) we can find any solution to (7.7.1) by
just multiplying Φ(t) by the initial conditions x(0). Summarizing we have found:

Th 1 Given a 2×2 matrix A, there is a 2×2 matrix Φ(t) such that any solution of

(7.7.7) x′ = Ax, x(0) = x0

satisfies

(7.7.8) x(t) = Φ(t)x0

Note the analogy with the case of one equation

x′ = ax, x(0) = x0

1



2

where the solution satisfies
x(t) = eatx0.

The analogy actually goes further. Recall that we can expand in a Taylor series

eat = 1 + ta+
1

2
t2a2 + · · ·+ 1

k !
tkak + · · ·

If A is a 2× 2 matrix now define the 2× 2 exponential matrix by

(7.7.7) eAt = I + tA+
t2

2
A2 + · · ·+ tk

k !
Ak + · · ·

Each term is a 2×2 matrix and one can show that each entry in the sum converges.
It is not practical to use (7.7.7) but there are other ways to calculate it.
We will show that eAt is in fact equal to the matrix Φ(t) in Th 1. In fact,

d

dt
eAt =

d

dt

(
I + tA+

t2

2
A2 + · · ·+ tk

k !
Ak + · · ·

)
= A+ tA2 + · · ·+ tk−1

(k − 1) !
Ak + · · · = A

(
I + tA+ · · ·+ tk−1

(k − 1) !
Ak−1

)
= AeAt

and if t = 0
eA0 = I

It therefore follows that
x(t) = eAtx0

satisfies (7.7.5) and eAt = Φ(t) in (7.7.6). In fact,

d

dt
x =

d

dt
eAtx0 =

( d

dt
eAt

)
x0 = AeAtx0 = Ax,

and
x(0) = eA0x0 = Ix0 = x0

Ex 1 Calculate the exponential matrix for the system x′=Ax, whereA=

[
1 −2
−2 1

]
.

Sol By Ex 7.3.2 the eigenvalues and vectors are A

[
1
1

]
=−

[
1
1

]
, A

[
1
−1

]
= 3

[
1
−1

]
and by Ex 7.5.1 the solution to x′ = Ax with any initial data x(0)=x0=(a, b)T is

x =
a+b

2
e−t

[
1
1

]
+

a−b

2
e3t

[
1
−1

]
=

 e−t+ e3t

2
e−t− e3t

2

 a+

 e−t− e3t

2
e−t+ e3t

2

 b

=

 e−t+ e3t

2

e−t− e3t

2
e−t− e3t

2

e−t+ e3t

2

[ a
b

]

Hence the solution to the initial value problem x′ = Ax, x(0) = x0 is

x(t) = Φ(t)x0, where Φ(t) =

 e−t+ e3t

2

e−t− e3t

2
e−t− e3t

2

e−t+ e3t

2

= eAt.



3

Diagonalization. Since its so easy to calculate Ak applied to an eigenvector
Akx(n) = λk

nx
(n) and since we can expand any vector as a sum of the eigenvec-

tors if they form a basis, there should be an easy way to calculate Ak in this case.
In fact, note that in our example above[

1 −2
−2 1

] [
1 1
1 −1

]
=

[
−1 3
−1 −3

]
=

[
1 1
1 −1

][
−1 0
0 3

]
Hence if we multiply on the right withe the inverse we get[

1 −2
−2 1

]
=

[
1 1
1 −1

][
−1 0
0 3

] [
1 1
1 −1

]−1

= TDT−1

where D is the diagonal matrix in the middle. It therefore follows that

Ak = TDT−1TDT−1 · · ·TDT−1 = TDkT−1

Here

Dk =

[
−1 0
0 3

] [
−1 0
0 3

]
· · ·

[
−1 0
0 3

]
=

[
(−1)k 0

0 3k

]
Hence its easy to calculate

Ak =

[
1 1
1 −1

][
(−1)k 0

0 3k

] [
1 1
1 −1

]−1

Hence

eAt = I + TDT−1t+ TD2T−1 t
2

2
+ · · · = T (I +Dt+D2 t

2

2
+ . . . )T−1 = TeDtT−1

since we also can write I = TT−1. Here

eDt =

[
1 0
0 1

]
+

[
−1 0
0 3

]
t+

[
(−1)2 0

0 32

]
t2

2
+ . . .

=

[
1− t+ (−1)2 t2

2 + . . . 0

0 1 + 3t+ 32 t2

2 + . . .

]
=

[
e−t 0
0 e3t

]
Hence

eAt = TeDtT−1 =

[
1 1
1 −1

] [
e−t 0
0 e3t

]
1

2

[
1 1
1 −1

]
= · · · =

 e−t+ e3t

2

e−t− e3t

2
e−t− e3t

2

e−t+ e3t

2


which agrees with the previous answer.

Note that the differential equation x′ = Ax, where A is the matrix above can be
solved by diagonalizing the whole system as follows: Let y = T−1x. Then

y′ = T−1x′ = T−1ATy = Dy

i.e.
y′1 = λ1y1, y′2 = λ2y2

which has the solution y1=c1e
λ1t, y2=c2e

λ2t and we can transform back to x=Ty.


