
Lecture 27: 7.9 Nonhomogeneous equations. There are several methods in
the book but we will only go over using diagonalization and the exponential matrix.

Diagonalization Suppose that A is an n×n matrix with n linearly independent
eigenvectors Aξ(k) = λkξ

(k). Let T = [ ξ(1) · · · ξ(n) ] be the n× n matrix whose kth

column is ξ(k), for k = 1, . . . n. Then AT = [Aξ(1) · · ·Aξ(n) ] = [λ1ξ
(1) · · ·λnξ

(n) ]

is the matrix who’s kth column vector is given by λkξ
(k). Moreover if D is the

n× n diagonal matrix with diagonal elements λ1, . . . , λn then we also have TD =
[λ1ξ

(1) · · ·λnξ
(n) ]. Hence AT = TD so we conclude

T−1AT = D.

Note that the differential equation x′ = Ax + g, where A is the matrix above
can be solved by diagonalizing the whole system as follows: Let y = T−1x. Then

y′ = T−1x′ = T−1
(
Ax+ g

)
= T−1ATy + T−1g = Dy + h, where h = T−1g

i.e.
y′k = λkyk + hk, k = 1, . . . , .

If we multiply by the integrating factor e−λkt and integrate we get

yk(t)=yk(0)e
λkt + eλkt

∫ t

0

e−λks hk(s) ds,

We then transform it back to x=Ty.

Exponential matrix and integrating factor.

d

dt

(
e−Atx(t)

)
= −Ae−Atx(t) + e−Atx′ = −Ae−Atx(t) + e−At(Ax+ g) = e−Atg(t)

and integrating both sides gives

e−Atx(t)− x(0) =

∫ t

0

e−Asg(s) ds

and hence

x(t) = eAtx(0) + eAt

∫ t

0

e−Asg(s) ds = eAtx(0) +

∫ t

0

eA(t−s)g(s) ds

where we used that
eAte−At = I = e−AteAt.

This is just the fact that if we first solve the differential equation x′ = Ax time t
forward and then solve it backwards the same time we are back to where we started.
It can also be prove by calculating that the derivative of the product above vanishes.
We also used that

eAte−As = eA(t−s)
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Ex 1 Find a particular solution to the system x′=Ax + g, where A=

[
1 −2
−2 1

]
and g = 2

[
e−t

t

]
.

Sol 1 By Ex 7.3.2 the eigenvalues and vectors are A

[
1
1

]
=−

[
1
1

]
, A

[
1
−1

]
= 3

[
1
−1

]
.

Let T =

[
1 1
1 −1

]
. Then T−1 =

[
1
2

1
2

1
2 − 1

2

]
, T−1AT = D =

[
−1 0
0 3

]
and h =

T−1g =

[
e−t + t
e−t − t

]
. We change variables x = Ty to obtain y′ = Dy + h or

y′1 = −y1 + e−t + t, y′2 = 3y2 + e−t − t

Moving y1 respectively y2 to the left and multiplying by the integrating factors
gives

(y1e
t)′ = et(e−t + t), (y2e

−3t)′ = e−3t(e−t − t)

Integration gives

y1(t) = e−t

∫ t

(1 + ses) ds = e−t(t+ tet − et)

y2(t) = e3t
∫ t

(e−4s + se−3s) ds = e3t(−e−4t

4
− te−3t

3
− e−3t

9
)

We then have to transform back to x = Ty:

x(t) =

[
1 1
1 −1

] [
te−t + t− 1

−e−t − t/3− 1/9

]
=

[
(t− 1)e−t + 2t/3− 10/9
(t+ 1)e−t + 4t/3− 8/9

]
.

Sol. 2 Using the exponential matrix. We have

eAt = TeDtT−1 =

[
1 1
1 −1

] [
e−t 0
0 e3t

] [
1
2

1
2

1
2 − 1

2

]
=

1

2

[
e−t + e3t e−t − e3t

e−t − e3t e−t + e3t

]
A particular solution is

x(t) = eAt

∫ t

e−Asg(s) ds

Here

e−Asg(s) =

[
es + e−3s es − e−3s

es − e−3s es + e−3s

] [
e−s

s

]
=

[
1 + e−4s + s(es − e−3s)
1− e−4s + s(es + e−3s)

]
so∫ t

e−Asg(s) ds =

[ ∫ t
1 + e−4s + s(es − e−3s) ds∫ t
1− e−4s + s(es + e−3s) ds

]
=

[
t− e−4t/4 + tet − et + te−3t/3− e−3t/9)
t+ e−4t/4 + tet − et − te−3t/3 + e−3t/9)

]
and

x(t) =
1

2

[
e−t + e3t e−t − e3t

e−t − e3t e−t + e3t

] [
t− e−4t/4 + tet − et + te−3t/3− e−3t/9)
t+ e−4t/4 + tet − et − te−3t/3 + e−3t/9)

]
= . . .

Ok, this is this way is too lengthy so the other way above is better.

The case when we don’t have a basis of eigenvectors.


