Lecture 3: 2.1 First order linear equations: Integrating Factor. In this lecture we will learn to solve a general first order linear differential equation

\[\frac{dy}{dt} + p(t)y = g(t). \]

We want to find a way to write this equation in the form

\[\frac{d}{dt} G(t, y(t)) = f(t), \]

because then we can integrate it and solve for \(y \). There is actually a way to do by multiplying by a specially chosen integrating factor \(\mu(t) \)

\[\mu \frac{dy}{dt} + p(t) \mu y = \mu g(t), \]

and using the formula for the derivative of a product:

\[\frac{d}{dt} (\mu y) = \mu \frac{dy}{dt} + \frac{d\mu}{dt} y. \]

In fact if we choose \(\mu \) so that

\[\frac{d\mu}{dt} = p\mu \]

we see that

\[\frac{d}{dt} (\mu y) = \mu g \]

which is of the form (2.1.2) and we can integrate and solve for \(y \). It remains to see if we can find \(\mu(t) \) satisfying (2.1.3). Dividing by \(\mu \) and using the chain rule we get

\[\frac{d}{dt} \ln |\mu| = \frac{d\mu/dt}{\mu} = p, \]

and integrating we get

\[\ln |\mu| = \int p \, dt + C \]

so

\[|\mu| = e^{\int p \, dt} e^C. \]

Note that we only need to find one solution \(\mu \) so we can pick

\[\mu = e^{\int p \, dt}. \]

Hence

\[\frac{d}{dt} \left(e^{\int p \, dt} y \right) = e^{\int p \, dt} g \]

so integrating gives

\[e^{\int p \, dt} y = \int e^{\int p \, dt} g \, dt + C \]

and hence

\[y = Ce^{-\int p \, dt} + e^{-\int p \, dt} \int e^{\int p \, dt} g \, dt \]
Example Find the general solution to

\[
\frac{dy}{dt} + ay = b
\]

The integrating factor is

\[
\mu = e^{\int adt} = e^{at}.
\]

If we multiply both sides of (2.1.4) with the integrating factor we get

\[
e^{at}\frac{dy}{dt} + ae^{at}y = be^{at}
\]

Hence we get

\[
\frac{d}{dt} (e^{at}y(t)) = be^{at}
\]

and if we take the antiderivative of this we get

\[
e^{at}y(t) = \frac{b}{a}e^{at} + c
\]

i.e.

\[
y = \frac{b}{a} + ce^{-at}
\]

Example Find all solutions to

\[
\frac{dy}{dt} + \frac{1}{t}y = 1, \quad t > 0.
\]

The integrating factor is

\[
\mu = e^{\int \frac{1}{t} \, dt} = e^{\ln|t|} = |t|
\]

and multiplying with it gives

\[
\frac{d}{dt} (ty) = t \left(\frac{dy}{dt} + y \right) = t
\]

and integrating gives

\[
ty = t^2/2 + C
\]

so for some constant \(C \)

\[
y = t/2 + C/t.
\]

Example Find the general solution to

\[
y' - 2y = 3e^t
\]

Example Find the general solution to

\[
y' - \frac{1}{2}y = 2 \cos t
\]