Lecture 3: 2.1 First order linear equations: Integrating Factor. In this lecture we will learn to solve a general first order linear differential equation

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{2.1.1}
\end{equation*}
$$

We want to find a way to write this equation in the form

$$
\begin{equation*}
\frac{d}{d t} G(t, y(t))=f(t) \tag{2.1.2}
\end{equation*}
$$

because then we can integrate it and solve for y. There is actually a way to do by multiplying by a specially chosen integrating factor $\mu(t)$

$$
\mu \frac{d y}{d t}+p(t) \mu y=\mu g(t)
$$

and using the formula for the derivative of a product:

$$
\frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y
$$

In fact if we choose μ so that

$$
\begin{equation*}
\frac{d \mu}{d t}=p \mu \tag{2.1.3}
\end{equation*}
$$

we see that

$$
\frac{d}{d t}(\mu y)=\mu g
$$

which is of the form (2.1.2) and we can integrate and solve for y. It remains to see if we can find $\mu(t)$ satisfying (2.1.3). Dividing by μ and using the chain rule we get

$$
\frac{d}{d t} \ln |\mu|=\frac{d \mu / d t}{\mu}=p
$$

and integrating we get

$$
\ln |\mu|=\int p d t+C
$$

so

$$
|\mu|=e^{\int p d t} e^{C} .
$$

Note that we only need to find one solution μ so we can pick

$$
\mu=e^{\int p d t} .
$$

Hence

$$
\frac{d}{d t}\left(e^{\int p d t} y\right)=e^{\int p d t} g
$$

so integrating gives

$$
e^{\int p d t} y=\int e^{\int p d t} g d t+C
$$

and hence

$$
y=C e^{-\int p d t}+e^{-\int p d t} \int e^{\int p d t} g d t
$$

Example Find the general solution to

$$
\begin{equation*}
\frac{d y}{d t}+a y=b \tag{2.1.4}
\end{equation*}
$$

The integrating factor is

$$
\mu=e^{\int a d t}=e^{a t} .
$$

If we multiply both sides of (2.1.4) with the integrating factor we get

$$
\begin{equation*}
e^{a t} \frac{d y}{d t}+a e^{a t} y=b e^{a t} \tag{2.1.4}
\end{equation*}
$$

Hence we get

$$
\frac{d}{d t}\left(e^{a t} y(t)\right)=b e^{a t}
$$

and if we take the antiderivative of this we get

$$
e^{a t} y(t)=\frac{b}{a} e^{a t}+c
$$

i.e.

$$
y=b / a+c e^{-a t}
$$

Example Find all solutions to

$$
\frac{d y}{d t}+\frac{1}{t} y=1, t \quad t>0
$$

The integrating factor is

$$
\mu=e^{\int t^{-1} d t}=e^{\ln |t|}=|t|
$$

and multiplying with it gives

$$
\frac{d}{d t}(t y)=t\left(\frac{d y}{d t}+y\right)=t
$$

and integrating gives

$$
t y=t^{2} / 2+C
$$

so for some constant C

$$
y=t / 2+C / t .
$$

Example Find the general solution to

$$
y^{\prime}-2 y=3 e^{t}
$$

Example Find the general solution to

$$
y^{\prime}-\frac{1}{2} y=2 \cos t
$$

