Lecture 30: 9.2-3. We consider a 2×2 nonlinear system

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x}), \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \tag{9.1}\\
x_{2}
\end{array}\right], \quad \mathbf{f}(\mathbf{x})=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

We study the stability of the nonlinear system around critical points $\mathbf{f}\left(\mathbf{x}^{0}\right)=\mathbf{0}$ by approximating with a linear system as follows.

If \mathbf{f} is twice continuously differentiable then by Taylor's formula

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})=\mathbf{f}\left(\mathbf{x}^{0}\right)+(\mathbf{D} \mathbf{f})\left(\mathbf{x}^{0}\right)\left(\mathbf{x}-\mathbf{x}^{0}\right)+\mathbf{h}(\mathbf{x}) \tag{9.2}
\end{equation*}
$$

where the derivative is the linear map

$$
(\mathbf{D f})\left(\mathbf{x}^{0}\right)\left(\mathbf{x}-\mathbf{x}^{0}\right)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1}-x_{1}^{0} \\
x_{2}-x_{2}^{0}
\end{array}\right]
$$

and

$$
\mathbf{h}(\mathbf{x})=\left[\begin{array}{l}
h_{1}\left(x_{1}, x_{2}\right) \\
h_{2}\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

satisfies

$$
\|\mathbf{h}(\mathbf{x})\| \leq C\left\|\mathbf{x}-\mathbf{x}^{0}\right\|^{2}
$$

In fact this follows from Taylor's formula applied to each component of \mathbf{f} :
$f_{1}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}^{0}, x_{2}^{0}\right)+\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right)\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right)\left(x_{2}-x_{2}^{0}\right)+h_{1}\left(x_{1}, x_{2}\right)$
$f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(x_{1}^{0}, x_{2}^{0}\right)+\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right)\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right)\left(x_{2}-x_{2}^{0}\right)+h_{2}\left(x_{1}, x_{2}\right)$
where $\left|h_{i}\left(x_{1}, x_{2}\right)\right| \leq C\left(\left(x_{1}-x_{1}^{0}\right)^{2}+\left(x_{2}-x_{2}^{0}\right)^{2}\right), i=1,2$.
If \mathbf{x}^{0} is a critical point and \mathbf{x} is close to \mathbf{x}^{0} then $\mathbf{u}=\mathbf{x}-\mathbf{x}^{0}$ is small and using (9.2) we rewrite the system (9.1) as

$$
\begin{equation*}
\frac{d \mathbf{u}}{d t}=A \mathbf{u}+\mathbf{h}\left(\mathbf{x}^{0}+\mathbf{u}\right), \quad \text { where } \quad\left\|\mathbf{h}\left(\mathbf{x}^{0}+\mathbf{u}\right)\right\| \leq C\|\mathbf{u}\|^{2} \tag{9.3}
\end{equation*}
$$

and $A=(\mathbf{D f})\left(\mathbf{x}_{0}\right)$. Assuming that A is invertible it follows that $\left\|\mathbf{h}\left(\mathbf{x}^{0}+\mathbf{u}\right)\right\| \ll$ $\|A \mathbf{u}\|$ when $\|\mathbf{u}\|$ is small. We can hence approximate the nonlinear system (9.3) when \mathbf{x} is close to \mathbf{x}^{0} by the linear system

$$
\frac{d \mathbf{u}}{d t}=A \mathbf{u}
$$

Ex Find the critical points and determine if they are stable

$$
\begin{align*}
x_{1}^{\prime}=-\left(x_{1}-x_{2}\right)\left(1-x_{1}-x_{2}\right) & \equiv f_{1}\left(x_{1}, x_{2}\right) \\
x_{2}^{\prime}=x_{1}\left(2+x_{2}\right) & \equiv f_{1}\left(x_{1}, x_{2}\right) \tag{9.4}
\end{align*}
$$

The critical points are the solution to $f_{1}\left(x-1, x_{2}\right)=f_{2}\left(x_{1}, x_{2}\right)=0$. There are four critical points $(0.0),(0,1),(-2,2)$ and $(3,-2)$.

Around (0,0) we have

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=-x_{1}+x_{2}+x_{1}^{2}-x_{2}^{2} \\
& f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}+x_{1} x_{2}
\end{aligned}
$$

Hence

$$
\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
x_{1}^{2}-x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right]
$$

When $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ is small we can hence approximate the nonlinear system (9.4) by the linear system

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The characteristic polynomial is $(-1-\lambda)(-\lambda)-2=\lambda^{2}+\lambda-2=\left(\lambda+\frac{1}{2}\right)^{2}-\frac{9}{4}=0$. The roots are $\lambda=-2,1$. The eigenvector corresponding to $\lambda=-2$ is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and the eigenvector corresponding to $\lambda=1$ is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The linear system has a saddle point so its unstable.

Around $(-2,-2)$ we change variable $x_{1}=u_{2}-2, x_{2}=u_{2}-2$ and obtain

$$
\begin{aligned}
& f_{1}\left(u_{1}-2, u_{2}-2\right)=\left(-u_{1}+2\right)\left(5-u_{1}-u_{2}\right)=-5 u_{1}+5 u_{2}+u_{1}^{2}-u_{2}^{2} \\
& f_{2}\left(u_{1}-2, u_{2}-2\right)=\left(u_{1}-2\right) u_{2}=-2 u_{2}+u_{1} u_{2}
\end{aligned}
$$

Hence the nonlinear system cab be approximated by the linear system,

$$
\frac{d}{d t}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
-5 & 5 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

The eigenvalues are -5 and -2 . The linear system is hence stable.
We finally note that the matrices above can be obtain from the derivative matrix

$$
\mathbf{D f}(\mathbf{x})=\left[\begin{array}{cc}
-1+2 x_{1} & 1-2 x_{2} \\
2+x_{2} & x_{1}
\end{array}\right]
$$

Hence

$$
(\mathbf{D f})(-2,-2)=\left[\begin{array}{cc}
-5 & 5 \\
0 & -2
\end{array}\right]
$$

