
Lecture 31: 9.2-3 Trajectories. One can sometimes turn an autonomous system

(9.5) dx/dt = F (x, y), dy/dt = G(x, y)

into a first order equation

(9.6)
dy

dx
=

dy/dt

dx/dt
=

G(x, y)

F (x, y)

This first order equation can sometimes be solved at least implicitly

(9.7) H(x, y) = c

This means that the trajectories to (9.5) are the level curves (9.7):

0 =
d

dt
H(x, y) = Hx(x, y)

dx

dt
+Hy(x, y)

dy

dt
= Hx(x, y)F (x, y) +Hy(x, y)G(x, y)

from which it follows that

Hx(x, y) = h(x, y)G(x, y), Hy(x, y) = −h(x, y)F (x, y)

for some function h(x, y). It follows that the critical points for the system (9.5);

(9.8) F (x, y) = G(x, y) = 0

are also critical points, or stationary points, for the function H(x, y) in (9.7), i.e.

(9.9) Hx(x, y) = Hy(x, y) = 0.

Ex 1 Find the trajectories to

dx/dt = y, dy/dt = x

Sol We can write
dy

dx
=

x

y

Separating variables gives
ydy = xdx

so
y2

2
=

x2

2
+ C.

Hence
H(x, y) ≡ y2 − x2 = c

Alternatively we can solve it with the methods for linear systems which gives

x = c1e
t + c2e

−t, y = c1e
t − c2e

−t

This example explains why its called a saddle point, which is because the surface
z = H(x, y) close to x = y is shaped like a saddle.
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Ex 2 Find the trajectories to

dx/dt = y, dy/dt = −x

Sol We can write
dy

dx
= −x

y

Separating variables gives
ydy = −xdx

so
y2

2
= −x2

2
+ C.

Hence the level curves are circles:

H(x, y) ≡ y2 + x2 = c

Alternatively we can solve it with the methods for linear systems which gives

x = A cos t+B sin t = R cos (t− θ0), y = −A sin t+B cos t = −R sin (t− θ0).

Ex Find the trajectories to the system

dx/dt = 4− 2y, dy/dt = 12− 3x2

Sol We have
dy

dx
=

12− 3x2

4− 2y
so

(4− 2y)dy = (12− 3x2)dx

Hence
H(x, y) ≡ 4y − y2 − 12x+ x3 = c.

When we draw these level curves for different values of c it may be helpful to start
with the level curves that go through the stationary points of H(x, y) which are
the critical points of the system, i.e. 4− 2y = 0 = 12− 3x2, i.e y = 2 and x = ±2.
At (−2, 2) we change variables x = u− 2, y = v + 2 then we get the system

du/dt = −2v, dv/dt = 12u− 3u2

The eigenvalues for the linearized system at (−2, 2) are hence ±i
√
24 so the lin-

earized system has a center there. However when the real part of an eigenvalues
is zero then the linear system can not be used to determine the stability of the
nonlinear system because its to sensitive and we need some room to say that the
linear terms dominate the nonlinear terms. Instead we look at the level surfaces
close to the critical point

H(u− 2, v + 2) = 32− v2 − 6u2 + u3

For small u and v the level curves

v2 + 6u2(1− u/6) = c

are approximately ellipses u2 + 6v2 = c, which means that the critical point is a
center also for the nonlinear problem.
At (2, 2) we change variables x = u+ 2 and y = v + 2 to obtain

H(u+ 2, v + 2) = −10 + 6u2 − v2 + u3

This is hence a saddle point.
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The pendulum. A nonlinear example that well illustrates these concepts is that
of the pendulum. The pendulum consists of a mass m attached to one end of a
rigid weightless rod of length L. The other end of the rod is attached to a fixed
origin O, around which the rod is free to rotate in a vertical plane. The position
of the pendulum is described by an angle θ between the rod and the downward
vertical direction, in which direction the gravitational force mg acts. Moreover we
assume that we have a damping force or friction −CLθ′ which is proportional to
but in opposite direction to the velocity Lθ′. Newton’s equation ma = F gives

mL
d2θ

dt2
= −CL

dθ

dt
−mg sin θ

With the constants ω2= g
L , γ=

C
m we write it as a system for x1 = θ and x2 = θ′:

x′
1 = x2, x′

2 = −ω2 sinx1 − γx2

The critical points are given by

x2 = 0, −ω2 sinx1 − γx2 = 0,

i.e. x2 = 0 and x1 = 0 or x1 = π. x1 = 0 corresponds to the downward position.
The downward position is stable. However its asymptotically stable only if the
damping constant C > 0. x1 = π corresponds to the position of the rod straight
up, which is an equilibrium if there is no initial velocity, since the forces in this
case only acts straight down. However, this equilibrium is highly unstable and the
smallest movement from it will lead to large movements of the rod.


