Lecture 4: 2.2 Separable equations. We can not solve a general first order equation:

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{2.2.1}
\end{equation*}
$$

but there is another special case that we can deal with called separable equations. First we note that there are many ways to write (2.2.1) in the form

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

If we can find a way such that M only depends on x and N only depends on y, i.e.

$$
M(x)+N(y) \frac{d y}{d x}=0
$$

then the equation is called separable. In that case we formally multiply with $d x$

$$
M(x) d x+N(y) d y=0
$$

and take the anti derivative:

$$
\int M(x) d x+\int N(y) d y=0
$$

The linear equation with constant coefficients (2.1.1) was in fact separable and to explain the method let us do a couple of more examples:

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

We separate the variables i.e. multiply both sides by $y d x$

$$
y d y=-x d x
$$

and integrating this gives

$$
y^{2} / 2=-x^{2}+C
$$

or

$$
x^{2}+y^{2}=K
$$

for some constant K. The solution curves are hence circles.

$$
\frac{d y}{d x}=\frac{y}{x}
$$

Multiplying both sides by $d x / y$ gives

$$
\frac{d y}{y}=\frac{d x}{x}
$$

and integration gives

$$
\ln |y|=\ln |x|+C
$$

and exponentiating both sides gives

$$
|y|=e^{C}|x|
$$

i.e.

$$
y=K x
$$

for some constant K. The solution curves are lines through the origin.
A difficult problem is to in general find the solution curves for

$$
\frac{d y}{d x}=\frac{c x+d y}{a x+b y}
$$

where a, b, c, d are constants.

Model I modified Falling body. As it turns out, a more realistic model of the air resistance for a falling body is that instead of $-\gamma v$ the force is $-k v^{2}$:

$$
m \frac{d v}{d t}=m g-k v^{2}
$$

As for the simpler linear model discussed earlier the velocity v_{∞} when the right hand side vanishes $m g-k v_{\infty}^{2}=0$ corresponds to a stable equilibrium. In fact for some realistic values of the parameters the ode becomes

$$
\frac{d v}{d t}=9.8-9.8 \cdot 10^{-4} v^{2}, \quad v(0)=0
$$

which can be solved using separation of variables:

$$
\frac{d v}{100^{2}-v^{2}}=9.8 \cdot 10^{-4} d t
$$

and partial fractions

$$
\frac{1}{200}\left(\frac{d v}{100-v}+\frac{d v}{100+v}\right)=9.8 \cdot 10^{-4} d t
$$

If we integrate this we get

$$
\frac{1}{200}(\ln |100+v|-\ln |100-v|)=9.8 \cdot 10^{-4} t+C
$$

where $C=0$ since all the other terms vanish when we put in $t=0$ and use that $v(0)=0$. Hence

$$
\begin{gathered}
\ln \left|\frac{100+v}{100-v}\right|=0.196 t \\
v=\frac{100 e^{0.196 t}-1}{e^{0.196 t}+1}
\end{gathered}
$$

Hence

$$
\lim _{t \rightarrow \infty} v(t)=100=v_{\infty}
$$

2.6 Exact Equations. The equation

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

is neither linear nor separable but still it can be reduced to the form

$$
\frac{d}{d x} \psi(x, y(x))=0
$$

if ψ is chosen correctly. In that case by the chain rule we have

$$
\frac{d}{d x} \psi(x, y(x))=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}
$$

Hence if we can find ψ so that

$$
\frac{\partial \psi}{\partial x}=2 x+y^{2}, \quad \frac{\partial \psi}{\partial y}=2 x y
$$

we have

$$
\frac{d}{d x} \psi(x, y(x))=2 x+y^{2}+2 x y \frac{d y}{d x}=0
$$

which has the solutions

$$
\psi(x, y)=c
$$

for some constant c. One can check that

$$
\psi(x, y)=x^{2}+x y^{2} .
$$

works. But how did we find it? First we solve

$$
\frac{\partial \psi}{\partial x}=2 x+y^{2}
$$

by integrating with respect to x when y is thought of as constant which gives

$$
\psi(x, y)=x^{2}+y^{2} x+f(y)
$$

where $f(y)$ is an arbitrary function of y, since the derivative of $f(y)$ with respect to x vanishes. Next we plug this into the second equation to get

$$
\frac{\partial}{\partial y}\left(x^{2}+x y^{2}+f(y)\right)=y^{2}+f^{\prime}(y)=y^{2}
$$

if we choose $f(y)=0$.
Consider a general first order equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

If we can find $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M, \quad \frac{\partial \psi}{\partial y}=N
$$

then

$$
\frac{d}{d x} \psi(x, y(x))=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

which has the solutions

$$
\psi(x, y)=c
$$

for some constant c.
Theorem Suppose that

$$
M_{y}(x, y)=N_{x}(x, y)
$$

for all (x, y). Then there is a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M, \quad \frac{\partial \psi}{\partial y}=N
$$

Its easy to see that this is a necessary condition, In fact if this is the case we must have that

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}
$$

and

$$
\frac{\partial N}{\partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}
$$

which are equal.

