
Lecture 5: 2.3 More models.

Model III: Mixing of chemicals. Suppose a time t = 0 a tank contains Q0 lb
of salt dissolved in 100 gal of water. Assume that water containing 1

4 lb of salt/gal
is entering the tank at a rate of r gal/min, and that the well-stirred mixture is
draining from the tank at the same rate. Find the amount of salt Q(t) in the tank
at any time t and the limiting amount QL as t→ ∞.

The rate of change of the amount of salt is equal to the rate of salt in minus the
rate of salt out. The rate of salt in is 1

4 lb/gal times the rate of water in r gal/min
and the rate of salt out is the concentration of salt in the tank, Q(t)/100 lb/gal
times the rate of water out r gal/min:

(2.3.1)
dQ

dt
=
r

4
− r Q

100

We want to solve this differential equation with initial condition Q(0) = Q0. Mul-
tiplying both sides of

dQ

dt
+

r

100
Q =

r

4

by the integrating factor

ert/100
(dQ
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r

100

)
= ert/100

r

4

makes the left the derivative of a product:

(2.3.2)
d

dt

(
Qert/100

)
= ert/100

r

4

If we take the antiderivative we obtain

Q(t)ert/100 = 25ert/100 + C

i.e.

Q(t) = 25 + Ce−rt/100

And solving for the initial condition Q0 = Q(0) = 25+C so C = Q0−25 and hence

(2.3.3) Q(t) = 25 + (Q0 − 25)e−rt/100

It in particular follows from this that

lim
t→∞

Q(t) = 25

no matter what Q0 is. This is however not so surprising since a limiting concen-
tration in the container of 25 lb/100 gal, i.e. 1

4 lb/gal, is exactly the concentration
of salt in the incoming water. Our physical intuition tells us that eventually the
concentration in the container ought to approach that of the incoming flow.
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Model IV: Compound Interest. Suppose that a sum of money is deposited in a
bank account that pays interest at annual rate r. The value S(t) of the investment
at time t depends on how often the interest is compounded as well as the rate. If
the interest is compounded once a year then then the change is

S(k + 1)− S(k) = rS(k)

or
S(k + 1) = S(k)(1 + r) = S(k − 1)(1 + r)2

and if we repeat it t times we get

(2.3.5) S(t) = (1 + r)tS(0)

On the other hand if the interest is assumed to be compounded continuously then
we get the differential equation:

(2.3.6)
d

dt
S(t) = rS(t)

If we instead assume (2.3.6) we get

(2.3.7) S(t) = S(0)ert = S(0)
(
er
)t

As it turns out when r is small and t is bounded then by using Taylor series

er ∼ 1 + r

which is why (2.3.7) is a good approximation to (2.3.6).

Ex Ms Doe retired yesterday. Her IRA account has a principal of $450, 000 which
gives an annual interested rate of 5.25% compounded continuously. Her budget calls
for annual expenses of $25, 000, with projected inflation of 2.5%. The differential
equation giving her savings is:

dy

dt
= 0.0525y − 20000e0.025t, y(0) = 450000

which has the solution

y = 730000e0.025t − 280000e0.0525t

Model V: Cooling. A hot object with temperature T is left to cool down in
a room with temperature A. Newton’s law of cooling states that the change in
temperature is negatively proportional to the temperature difference between the
object and the surroundings:

dT

dt
= −k(T −A)
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2.6 More Exact Equations.
Ex Solve the differential equation

x

(x2 + y2)3/2
+

y

(x2 + y2)3/2
dy

dx
= 0

If we can find ψ(x, y) such that

(2.6.3) ψx =
x

(x2 + y2)3/2
, and ψy =

y

(x2 + y2)3/2

then this equation can be written

d

dx
ψ
(
x, y(x)

)
= ψx(x, y(x)) + ψy(x, y(x))

dy

dx
= 0

which has the solution
ψ(x, y) = 0

from which we can solve for y as a function of x.
It is possible to find ψ satisfying (2.6.3) because

d

dy

x

(x2 + y2)3/2
=

d

dx

y

(x2 + y2)3/2

First we solve the first equation in (2.6.3)

∂

∂x
ψ =

x

(x2 + y2)3/2

which has the solution
ψ = −(x2 + y2)1/2 + h(y)

for some function h(y) which has to satisfy the second equation of (2.6.3)

∂

∂y
ψ =

∂

∂y

(
− (x2 + y2)1/2 + h(y)

) y

(x2 + y2)3/2
+ h′(y) =

y

(x2 + y2)3/2

if h(y) = 0. Hence the solution is given by

ψ(x, y) = −(x2 + y2)1/2 = C

from which we can solve for y as a function of x.
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Exact Equations with integrating factor. Even if (2.6.1) in not exact it may
become exact if we multiply by an integrating factor

(2.6.2) µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0

This is exact if we can find a µ such that

Mµy −Nµx + (My −Nx) = 0,

one can e.g. solve this in special cases with µ independent of y if (My −Nx)/N is
independent of y or with µ independent of x if (My−Nx)/M is independent of x.

See example in the book.


