Lecture 5: 2.3 More models.

Model III: Mixing of chemicals. Suppose a time ¢t = 0 a tank contains Q) lb
of salt dissolved in 100 gal of water. Assume that water containing i Ib of salt/gal
is entering the tank at a rate of r gal/min, and that the well-stirred mixture is
draining from the tank at the same rate. Find the amount of salt Q(t) in the tank
at any time ¢ and the limiting amount (), as t — oc.

The rate of change of the amount of salt is equal to the rate of salt in minus the
rate of salt out. The rate of salt in is ; 1b/gal times the rate of water in 7 gal/min
and the rate of salt out is the concentration of salt in the tank, Q(¢)/100 lb/gal
times the rate of water out r gal/min:
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We want to solve this differential equation with initial condition Q(0) = Q. Mul-
tiplying both sides of

by the integrating factor

dQ r r
rt/lOO(_ _> _ rt/100"
‘ a 100/ "¢

makes the left the derivative of a product:

d rt/100\ _ _rt/100"
(2.3.2) - (Qe ) = et/

If we take the antiderivative we obtain
Q(t)ert/mo — 95rt/100 4
i.e.
Q(t) = 25+ Ce~Tt/100

And solving for the initial condition Qy = Q(0) = 25+ C so C' = Qo — 25 and hence
(2.3.3) Q(t) = 25 + (Qq — 25)e~"t/100
It in particular follows from this that

lim Q(t) =25

t—o00

no matter what Qo is. This is however not so surprising since a limiting concen-
tration in the container of 25 1b/100 gal, i.e. 1 1b/gal, is exactly the concentration
of salt in the incoming water. Our physical intuition tells us that eventually the

concentration in the container ought to approach that of the incoming flow.
1



2

Model IV: Compound Interest. Suppose that a sum of money is deposited in a
bank account that pays interest at annual rate r. The value S(t) of the investment
at time t depends on how often the interest is compounded as well as the rate. If
the interest is compounded once a year then then the change is

S(k+1) — S(k) = rS(k)

or

S(k+1)=Sk)1+7)=S(k—1)(147)?

and if we repeat it ¢t times we get
(2.3.5) S(t) = (1+r)'S(0)

On the other hand if the interest is assumed to be compounded continuously then
we get the differential equation:

(2.3.6) %S(t) = rS(t)

If we instead assume (2.3.6) we get

(2.3.7) S(t) = S(0)e™ = S(0)(e")

As it turns out when r is small and ¢ is bounded then by using Taylor series
e ~14r

which is why (2.3.7) is a good approximation to (2.3.6).

Ex Ms Doe retired yesterday. Her IRA account has a principal of $450,000 which
gives an annual interested rate of 5.25% compounded continuously. Her budget calls
for annual expenses of $25,000, with projected inflation of 2.5%. The differential
equation giving her savings is:

d
d—ZZ = 0.0525y — 20000925t y(0) = 450000

which has the solution
Y= 73000060.02515 . 28000060'0525t

Model V: Cooling. A hot object with temperature T is left to cool down in
a room with temperature A. Newton’s law of cooling states that the change in
temperature is negatively proportional to the temperature difference between the
object and the surroundings:

dr

— = —k(T - 4)



2.6 More Exact Equations.
Ex Solve the differential equation

GRS N~
(22 + y2)3/2 ' (22 + y2)3/2 dz
If we can find ¢ (x,y) such that
x Y

(2.6.3) Y = and ¢y =

(22 + y2)3/2° (22 + y2)3/2

then this equation can be written

%w(% y(x)) = Ya(z, y(2)) + wy(x,y(a:));i—z =0

which has the solution

Y(z,y) =0

from which we can solve for y as a function of x.
It is possible to find 1) satisfying (2.6.3) because

d x d Y

dy (22 +42)3/2 ~ da (22 + y2)3/?
First we solve the first equation in (2.6.3)

0 T

or = (x2 +y2)3/2

which has the solution
¥ =—(2" +y*)"2 + h(y)

for some function h(y) which has to satisfy the second equation of (2.6.3)

O O ( o a1 Y T — Yy
oy’ 8y< (= +y7) +h(y)> (22 + 42)3/2 +h(y) = (22 + 42)3/2

if h(y) = 0. Hence the solution is given by
Y(ay) = —(@* +y*)2=C

from which we can solve for y as a function of x.
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Exact Equations with integrating factor. Even if (2.6.1) in not exact it may
become exact if we multiply by an integrating factor

(2.6.2) p(z,y)M(z,y) + p(z,y)N(2,y)y" =0
This is exact if we can find a p such that
Mpy — Npy + (M, — N,) =0,

one can e.g. solve this in special cases with p independent of y if (M, — N,)/N is
independent of y or with p independent of x if (M, — N,)/M is independent of x.

See example in the book.



