
Lecture 6: 2.4 Difference between linear and nonlinear differential equa-
tions. For linear equations we have the following existence theorem:

Th 1 Suppose that p and g are continuous functions on an open interval I : α <
t < β containing t0. Then there is a unique solution to the differential equation

(2.4.1)
dy

dt
+ p (t) y = g(t), t ∈ I, y(t0) = y0

In fact, we have already derived a formula for the general solution by multiplying
by the integrating factor µ:

y =
1

µ(t)

(
y0 +

∫ t

t0

µ(s)g(s) ds
)
, µ(t) = exp

(∫ t

t0

p(s) ds
)

However, the derivation assumed that the functions p and g were continuous or
else the function above might not be differentiable. In fact we have the following
counterexample.

Ex Find the solution to
t y′ + y = 0, y(1) = 2

Sol First we write it in the form (2.4.1):

y′ +
1

t
y = 0

Multiplying by the integrating factor

µe
∫
t−1 dt = eln |t| = | t|

gives
t y′ + y = 0.

Okey, so we got back the equation we started so it seems like we haven’t achieved
anything. However, the method of multiplying by the integrating factor always
makes it so that the left hand side is the derivative of a product:

d

dt

(
t y

)
= 0

This has the general solution
t y = C

or

y =
C

t

Putting in the initial condition y(1) = C/1 = 2, gives C = 2 so

y =
2

t

This is indeed a solution but note that it tends to infinity when t → 0. What
went wrong? The assumptions of the theorem are not satisfied when t = 0 since
p(t) = 1/t is not continuous when t = 0.
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The existence theorem for the general nonlinear equation is slightly different
Th 2 Suppose that f and ∂f/∂y are continuous functions on an open rectangle
R : α < t < β, γ < y < δ containing (t0, y0). Then in some interval I : t0 − h <
t < t0 + h there is a unique solution to the differential equation

(2.4.2)
dy

dt
= f(t, y), t ∈ I, y(t0) = y0

Note the difference with the linear case, that the solution might only exist in some
smaller interval I around t0: γ < t0 − h < t < t0 + h < δ, for some h > 0, in fact:

Ex Find the solution to the differential equation

y′ = y2, y(0) = 1

Sol If we separate the variables

y−2dy = dt

and integrate we get
y−1 = −t+ C

or

y =
1

C − t

Since y(0) = 1/C = 1 we get

(2.4.5) y =
1

1− t
This is a solution when t < 1, but it goes to infinity when t→ 1 even though the
right hand side of (2.4.4) is a smooth function for any t.

The phenomena in the previous example that the solution goes to infinity is called
blow-up and it is typical for nonlinear differential equations. Another thing that
can go wrong for a nonlinear differential equation with a right hand side that is not
differentiable is uniqueness:

Ex Find the solution(s) to

y′ = y1/3, y(0) = 0

Sol If we separate the variables

y−1/3 dy = dt

and integrate
3

2
y2/3 = t+ c

or

y =
(2
3

(
t+ c)

)3/2

and if we substitute the initial condition y(0)=(2c/3)3/2=0 we get c = 0 so

y =
(2
3
t
)3/2

However, another solution is
y = 0

Since there are two different solutions we don’t have uniqueness. This is due to
that the derivative of the right hand side y1/3 is not continuous when y = 0.
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2.8 The proof of the existence theorem. The proof of the existence theorem
is outlined in the problems to section 2.8. I advice anyone interested in math to go
through it. The first idea is to rewrite the equation (2.4.1) as

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds

As a first approximation to the solution we put

y0(t) = y0

and then successively

yn+1(t) = y0 +

∫ t

t0

f(s, yn(s)) ds, n ≥ 0

It turns that this yn(t) → y(t), converges as n → ∞, if t is sufficiently small.


