
Lecture 8: 3.1: Second order linear differential equations. We are now
going to study the initial value problem for second order linear differential equations:

(3.1.1) y′′ + p (t) y′ + q(t) y = g(t), y(t0) = y0, y′(t0) = y0

Such equations are likely to show up in physics since Newton’s second law: F = ma
talks about the acceleration a of a particle, which is the first order derivative of the
velocity v but the second order derivative of the position x:

ma = m
dv

dt
= m

d2x

dt2
= F

In the previous example with the falling body it was sufficient to just look at the
equation for the velocity since the force only depended on the velocity: F = F (v).
However, in general if the force also depends on the position F = F (x, v) then the
acceleration has to be thought of as the second order derivative of the velocity.
An example is that of a weight with mass m hanging in a spring. If y is the
displacement from the equilibrium position then the force from the spring acting
on the mass is −ky, where k > 0 is called the spring constant. By Newton’s second
law, ma = F , we get my′′ = −ky or

(3.1.2) my′′ + k y = 0,

Let us also remark that to completely determine he solution of a second order
equation we must give initial data for both the function and its derivative. In fact
our physical experience tells us that in order to determine the path of a particle we
must give both its initial position and initial velocity.

We will focus on linear homogeneous equations with constant coefficients:

(3.1.3) a y′′ + b y′ + c y = 0,

where a, b and c are constant, partly because there are many examples from physics
of this form such as (3.1.2) and partly because this is the case for which we will be
able to find an explicit expression for the solution. Here homogeneous stands for
that the right hand side is 0.
Based on the fact the general first order equation with constant coefficients

dy

dt
= ry

has a general solution of the form

y = Cert,

we guess that the general equation (3.1.3) might have a solution of the form

y = ert

for some r to be determined. If we substitute y = ert into (3.1.3) and use that

d

dt
ert = rert,

d2

dt2
ert = r2ert
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we get

a y′′ + b y′ + c y = ar2ert + brert + cert = (ar2 + br + c)ert = 0,

if r satisfies the so called characteristic equation

(3.1.4) ar2 + br + c = 0

We have hence shown that if r is a root of (3.1.4) then y = ert satisfies (3.1.3).
Since, in general the second degree polynomial (3.1.4) has two roots r1, r2 we in
fact have found two solutions to (3.1.3), er1t and er2t, if r1 ̸= r2.
However, since for a linear equation also a constant times a solution is a solution
and the sum of tow solutions is a solution it follows that

(3.1.5) y = c1e
r1t + c2e

r2t

also is a solution. In fact, if y1 and y2 are two solutions to (3.1.3) then so is
y = c1y1 + c2y2, since

a
d2y

dt2
+ b

dy

dt
+ cy = ac1

d2y1
dt2

+ ac2
d2y2
dt2

+ bc1
dy1
dt

+ bc2
dy2
dt

+ cc1y1 + cc2y2

= c1

(
a
d2y1
dt2

+ b
dy1
dt

+ cy1

)
+ c2

(
a
d2y2
dt2

+ b
dy3
dt

+ cy4

)
= 0

If r1 ̸= r2 and they are both real (3.1.5) turns out to be the general solution of
(3.1.3), i.e. any solution is of this form.
Ex Find the general solution to

(3.1.6) y′′ + 3y′ + 2y = 0

Sol The characteristic equation is r2 + 3r + 2 = (r + 2)(r + 1), so the roots are
r1 = −1 and r2 = −2. Hence the general solution is

(3.1.7) y = c1e
−t + c2e

−2t.

Ex Find the solution to the initial value problem

(3.1.8) y′′ + 3y′ + 2y = 0, y(0) = 1, y′(0) = 4.

Sol We already showed that the general solution is given by (3.1.7) and we now
have to show that we can determine the constants c1 and c2 in (3.1.7) so the initial
conditions in (3.1.8) are satisfied. If y is given by (3.1.7) then

y′(t) = −c1e
−t − 2c2e

−2t

and hence we must solve

y(0) = c1 + c2 = 1, y′(0) = −c1 − 2c2 = 4

Adding the two equations together we get −c2 = 5 so c2 = −5 and c1 = 6. Hence
the solution to (3.1.6) is

y = 6e−t − 5e−2t.

In a similar way one can show that in general when r1 ̸= r2 and both are real we
can choose the constants c1 and c2 so (3.1.5) satisfies any initial condition:

(3.1.9) y(0) = y0, y′(0) = y1

In fact it follows from (3.2.5) that

y(0) = c1 + c2 = y0, y′(0) = r1c1 + r2c2 = y1

and it is easy to see that this system in general has a solution if r1 ̸= r2.


