
Lecture 14: Analytic Solutions. For the first part below we are following Sec-
tion 4.6 in Evans but for the proof of convergence we are following Taylor.

The simplest pde

(1) ∂tu(t, x) = −c∂xu(t, x), u(0, x) = g(x)

can be solved in the class of real analytic solutions. g(x) is called real analytic if g
is infinitely differentiable and for each x0 ∈ R there is a δ > 0 such that the power
series

∞∑
k=0

g(k)(x0)

k!
(x− x0)

k

converges for |x−x0| < δ. This is then equivalent to that g(x) can be extended to a
holomorphic function g(z) for z ∈ C satisfying |z − x0| < δ. This is also equivalent
to that

|g(k)(x0)| ≤ Cλkk!

for some constants C and λ. In order to find analytic solutions of (1) we expand in
a power series

u(t, x) =
∞∑
k=0

∂k
t u(0, x)

k!
tk

Since by (1) ∂tu = −c∂xu and ∂2
t u = ∂t(−c∂xu) = −c∂x∂tu = (−c∂x)

2u and so on
∂k
t u = (−c∂x)

ku we get that

u(t, x) =
∞∑
k=0

g(k)(x)

k!
(−ct)k

converges for |ct| < δ is g is real analytic. Moreover the sum is equal to g(x− ct).
Now, this simple procedure might not always work since in general. Consider

the heat equation.

∂tu(t, x) = −c∂2
xu(t, x), u(0, x) = g(x)

The same procedure would give

u(t, x) =

∞∑
k=0

g(2k)(x)

k!
(−ct)k

which doesn’t converge if we take say g(x) = ex
2

. Also other, more serious problems
arises if try to solve the pde

(a∂t + b∂x)u(t, x) = 0, u(0, x) = g(x)

when a = 0. Then the PDE gives a compatibility condition on initial data; it must
satisfy g′(x) = 0. Furthermore, we can not calculate ∂tu(0, x) from initial data so
there are no conditions that the time derivatives have to satisfy and hence we do
not have uniqueness even if we have existence. The problem arises from that the
vector field a∂t + b∂x and hence its integral curves are tangential to the surface
{(t, x); t = 0} where Cauchy data are posed. if a = 0 we say that the surface is
characteristic.

Having this simple type of problems in mind let us now proceed to find out what
the picture is in general.
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Noncharacteristic surfaces

Consider a general quasilinear PDE in RN :
(1)∑
|α|=m

aα(D
m−1u, ..., u, x)Dαu+a0(D

m−1u, ..., u, x) = 0, where Dα =
∂α1

∂α1
x1

...
∂αn

∂αn
xn

Let us assume that Γ is a smooth, (n − 1) dimensional hypersurface. Let ν(x0) =
ν = (ν1, ..., νn) be the unit normal to Γ at a point x0 ∈ Γ. Define the j:th normal
derivative to be

∂ju

∂νj
=

(
n∑

k=1

νk
∂

∂xk

)j

u =
∑
|α|=j

(Dαu) να, where να = να1
1 ...ναn

n

The Cauchy problem is then to find a function u solving the (1), subject to the
boundary conditions

(2) u = g0,
∂u

∂ν
= g1, ...,

∂m−1u

∂νm−1
= gk−1, on Γ

We now pose the basic question: Assuming that u is a smooth solution to (1) do
the conditions (2) allow us to compute all partial derivatives of u along Γ? This
must certainly be so, if we are ever going to be able to calculate the terms of the
power series for u.

Let us first examine the case when Γ is the plane {xn = 0}. Then ν = (0, ..., 0, 1)
and hence the Cauchy data (2) becomes

(3) u = g0,
∂u

∂xn
= g1, ...,

∂m−1u

∂m−1
n

= gm−1 on {xn = 0}

Which further partial derivatives of u can we compute along Γ? First, note that
since u = g0 on all of Γ we can differentiate tangentially, that is, with respect to
xi, i = 1, ..., n− 1, to obtain

Dαu = Dαg0, on Γ, if αn = 0

Similarly

Dαu = Dα′
gk, on Γ, if αn = k ≤ m− 1, α′ = (α1, ..., αn−1, 0)

The difficulty arise, when we try to calculate

∂mu

∂xm
n

Here, we try to use the PDE (1). If a(0,...,0,m) ̸= 0 the we can solve for

(4)
∂mu

∂xm
n

= − 1

a(0,...,0,m)

 ∑
|α|=m,α ̸=(0,...,0,m)

aαD
αu+ a0


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Everything in the right hand side contains at most m− 1 derivatives with respect
to xn so it can be calculated in terms of the Cauchy data. Consequently we can
now compute also Dαu for αn = m on Γ, provided that a(0,...,0,m) ̸= 0. We say
that Γ is noncharacteristic for the PDE (1), if a(0,...,0,m) ̸= 0 on Γ. On the
other hand if a(0,...,0,m) = 0 the in general the PDE and Cauchy data can not
be simultaneously satisfied unless Cauchy data satisfies a compatibility condition∑

|α|=m,α ̸=(0,...,0,m) aαD
αu + a0 = 0 Now given that a(0,...,0,m) ̸= 0 can we now

calculate higher order partial derivatives? The answer is yes, since we can obtain
all higher order derivatives Dαu, with αn ≥ m by differentiating the PDE (4).

Definition 1. We say that the hypersurface Γ is noncharacteristic for the PDE (1)
if

(5)
∑

|α|=m

aαν
α ̸= 0, on Γ

If Γ is noncharacteristic let us now see that we can compute all partial derivatives
of u. This is proven by transforming to the previous case of Cauchy data on
{xn = 0}. First let us choose any point x0 ∈ Γ. Then we have diffeomorphisms
Φ,Ψ : Rn → Rn so that Ψ = Φ−1 and in a neighborhood of x0 Γ is given by
x = Ψ(y1, ..., yn−1, 0). Let v(y) = u(Ψ(y)) and hence u(x) = v(Φ(x)). Then v
satisfies a PDE

(6)
∑

|β|=m

bαD
βv + b0 = 0

We are going to prove that b(0,...,0,m) ̸= 0 if (5) is satisfied. Since u(x) = v(Φ(x))
we obtain

Dαu =
∂mv

∂ymn
(DΦn)α +

{
terms not involving

∂mv

∂ymn

}
if |α| = m. Thus it follows from (1) that

0 =
∑

|α|=m

aαD
αu+ a0 =

∑
|α|=m

aα(DΦn)α
∂mv

∂ymn
+

{
terms not involving

∂mv

∂ymn

}

and so
b(0,...,0,m) =

∑
|α|=m

aα(DΦn)α

Since DΦn is parallel to ν on Γ. Consequently b(0,...,0,m) is a nonzero multiple of
the term (5).



4

Cauchy-Kawalevsky theorem

The Cauchy-Kowalewsky theorem, in the linear case, asserts the local existence
of a real analytic solution to the ”Cauchy problem”

(1.1)

∂mu

∂tm
=

m−1∑
j=0

∑
|α|≤m−j

Ajα(t, x)
∂α

∂xα

∂ju

∂tj
+ f(t, x)

u(t0, x) = g0(x), ..., ∂
m−1
t u(t0, x) = gm−1(x)

in a neighborhood of (t0, x0) given that Ajα(t, x) and f(t, x) are real analytic in a
neighborhood of (t0, x0) and gj(x) are analytic in a neighborhood of x0. Without
loss of generality we may assume that (t0, x0) = (0, 0).

Any system of the form (1.1) can be converted into a first order system:

(1.2) ∂tu = L(t, x)∂xu+ L0(t, x)u+ f, u(0, x) = g(x)

where u = (u1, ..., uN ) and L(t, x)∂x =
∑n

k=1 Lk∂/∂xk . Here Lj(t, x) are N ×
N matrices with analytic elements and f and g are vectors with real analytic
components.

Problem 1: Show that one can convert (1.1) into a system of the form (1.2).
If we differentiate (1.2) we obtain

(1.3) ∂j+1
t u =

j∑
ℓ=0

(
j

ℓ

)(
(∂j−ℓ

t L)∂x∂
ℓ
tu+ (∂j−ℓ

t L0)∂
ℓ
tu
)
+ ∂j

t f

In particular, this inductively gives ∂j+1
t u(0, x) uniquely so we have at most one

analytic solution. On the other hand if we can use (1.3) to get sufficiently good

estimates for uj+1(x) = ∂j+1
t u(0, x) so that the power series

(1.4) u(t, x) =
∞∑
j=0

uj(x)

j!
tj

converges for (t, x) close to (0, 0) then (1.4) gives a solution to (1.2). To be more
precise, set u0(x) = g(x) and define uj+1(x) inductively by

(1.5) uj+1 =

j∑
ℓ=0

(
j

ℓ

)(
(∂j−ℓ

t L)∂xuℓ + (∂j−ℓ
t L0)uℓ

)
+ ∂j

t f

Since gj(x), and Lj(t, x) f(t, x) are real analytic we can extend them to holomor-
phic functions for x in a neighborhood of 0 in Cn. We keep t real for now. Without
loss of generality we may assume that gj(z), and Lj(t, z) f(t, z) are holomorphic in

a neighborhood of the closed unit ball B ∈ Cn, with real analytic dependence on t
for |t| ≤ 1: More specifically, we will assume that
(1.6)

∥g∥L∞(B) ≤ C2,
n∑

k=0

∥∂m
t Lk(0)∥L∞(B) ≤ C1λ

mm!, ∥∂m
t f(0)∥L∞(B) ≤ C2µ

mm!
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for some constants C1, C2 and λ, µ.
Problem 2: Why may we assume that these functions are holomorphic in a ball

of radius 1?
Let Hj be the Banach space of holomorphic functions on the (open ) unit ball

B having the property that

(1.7) Nj(u) = sup
z∈B

δ(z)j |u(z)| < ∞,

where δ(z) = 1−|z| is the distance from z to ∂B. We have the following properties
for these norms

Nj(u) ≤ Nj−1(u) ≤ ... ≤ N0(u) = ∥u∥L∞(B)(1.8)

Nj+k(uv) ≤ Nj(u)Nk(v)(1.9)

Nj+1(∂xu) ≤ γ(j + 1)Nj(u)(1.10)

(1.8)-(1.9) are trivial but the proof of (1.10) is longer so we postpone it to later.
We will inductively obtain estimates for Nj(uj). From (1.5) we obtain

(1.11) Nj+1(uj+1) ≤
j∑

ℓ=0

(
j

ℓ

)(
Nj−ℓ

(
∂j−ℓ
t L(0)

)
Nℓ+1(∂xuℓ) +Nj−ℓ

(
∂j−ℓ
t L0(0)

)
Nℓ(uℓ)

)
+Nj+1

(
∂j
t f(0)

)
≤ γ(j + 1)

j∑
ℓ=0

(
j

ℓ

)( n∑
k=0

Nj−ℓ

(
∂j−ℓ
t Lk(0)

)
Nℓ(uℓ)

)
+Nj+1(∂

j
t f(0))

By (1.6)

(1.12)

n∑
k=0

Nm

(
∂m
t Lk(0)

)
≤ C1λ

mm!, Nm

(
∂m
t f(0)

)
≤ C2µ

mm!

By, if necessary making λ and µ larger we may assume that

(1.13) µ = 2λ, µ ≥ 2γC1 + 1

Now, our inductive hypothesis on uℓ is that there exists constants C2 and µ such
that

(1.14) Nℓ(uℓ) ≤ C2µ
ℓℓ!, 0 ≤ ℓ ≤ j.

The ℓ = 0 case follows from our hypothesis on g(x). Substitution of (1.12) and
(1.14) into (1.11) gives

(1.15) Nj+1(uj+1) ≤ γC1C2(j + 1)!

j∑
ℓ=0

λj−ℓµℓ + C2µ
j(j + 1)!

Using (1.13) we see that
∑j

ℓ=0 λ
j−ℓµℓ ≤ 2µj and

(1.16) Nj+1(uj+1) ≤ C2(j + 1)! (2γC1)µ
j + C2µ

j(j + 1)! ≤ C2µ
j+1(j + 1)!

This completes the induction.
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Let B be the unit ball in Rn and set

Nj(u) = sup
x∈B

δ(x)j |u(x)|,

where δ(x) = 1− |x| is the distance from x to ∂B. We need the following lemma:

Lemma 1.1. Suppose that u is harmonic in B. Then there is constant γn depend-
ing only on the dimension n such that

Nj+1(∂ku) ≤ γn(j + 1)Nj(u)

Lemma 1.2. Let Bρ(x) be the ball of radius ρ centered at x in Rn and suppose that
u is harmonic in Bρ(x). Then there is constant C depending only on the dimension
n such that

|∂ku(x)| ≤
C

ρ
sup

y∈Bρ(x)

|u(y)|

Proof of Lemma 1.2. Since the inequality is invariant under translation and dila-
tions we may assume that x = 0 and ρ = 1. The solution of △u = 0, with u = g
on ∂B is given by Poisson’s formula:

u(x) = Cn

∫
∂B

1− |x|2

|x− y|n
g(y) dS(y)

If we differentiate this expression with respect to xk and put x = 0 we get

∂ku(0) = Cn

∫
∂B

−nyk
|y|n+2

g(y) dS(y)

from which the lemma follows.

Proof of Lemma 1.1. Let x ∈ B and let Bρ(x) ⊂ B be a ball of radius ρ = βδ(x),
where β < 1. Since for y ∈ Bρ(x) we have δ(y) ≥ δ(x)− ρ = (1− β)δ(x) it follows
from Lemma 1.2 that

δ(x)j+1|∂ku(x)| ≤
C

(1− β)jβ
sup

y∈Bρ(x)

δ(y)j |u(y)|

If we pick β = 1/(j + 1) we get the lemma since limj→∞(1− 1/(j + 1))j = e.


