Lecture 2: Convergence of Fourier series. Suppose that $f(x)$ is a period function $f(x+2 \pi)=f(x)$. Suppose also that $f(x)$ is either in C^{1} or L^{2}. Then the Fourier series converges uniformly respectively in L^{2} to $f(x)$:

$$
f(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}
$$

where the Fourier coefficients are given by

$$
c_{k}=\frac{1}{2 \pi} \int_{\pi}^{\pi} f(y) e^{-i k y} d y
$$

In order to prove this let us first is to phrase it in a more general abstract setting. Let us introduce the inner product and the norm

$$
(f, g)=\frac{1}{2 \pi} \int_{\pi}^{\pi} f(x) \overline{g(x)} d x, \quad\|f\|=\sqrt{(f, f)}
$$

Suppose that $\left\{X_{k}(x)\right\}_{k=1}^{\infty}$ is an orthonormal family of functions i.e.

$$
\left(X_{m}, X_{m}\right)=\delta_{m n}= \begin{cases}1, & \text { if } m=n \\ 0, & \text { if } m \neq n\end{cases}
$$

Let W_{N} be the subspace spanned by all functions of the forms $\sum_{k=-N}^{N} c_{k} X_{k}$. We want to find the function $f_{N}=\sum_{k=-N}^{N} c_{k} X_{k} \in W_{N}$ that best approximates f, in the sense that it makes the norm

$$
\left\|f-f_{N}\right\|
$$

as small as possible. We have

$$
\begin{aligned}
& \left\|f-f_{N}\right\|^{2}=\left(f-f_{N}, f-f_{N}\right)=\|f\|^{2}+\left\|f_{N}\right\|^{2}-\left(f, f_{N}\right)-\left(f_{N}, f\right) \\
= & \|f\|^{2}+\sum_{k=-N}^{N}\left|c_{k}\right|^{2}-c_{k} \overline{\left(f, X_{k}\right)}-\overline{c_{k}}\left(f, X_{k}\right)=\|f\|^{2}-\sum_{k=-N}^{N}\left|\left(f, X_{k}\right)\right|^{2}+\sum_{k=-N}^{N}\left|c_{k}-\left(f, X_{k}\right)\right|^{2}
\end{aligned}
$$

This sum is minimized for

$$
c_{k}=c_{k}(f)=\left(f, X_{k}\right) .
$$

for all k. Furthermore, with this choice of c_{k} we conclude that

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}(f)\right|^{2} \leq\|f\|^{2}
$$

This is called Bessel's inequality. Moreover, there is equality if and only if f_{N} converges to f in L^{2} norm.

We now leave the setting and get into the analytical detailed estimates. We have

$$
f_{N}(x)=\sum_{k=-N}^{N} c_{k} e^{i k x}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{k=-N}^{N} e^{i k(x-y)} f(y) d y
$$

Here by the formula for a geometric sum $\sum_{k=0}^{N} a^{k}=\left(1-a^{k+1}\right) /(1-a)$;

$$
K_{N}(z)=\sum_{k=-N}^{N} e^{i k z}=\sum_{k=0}^{N}\left(e^{i z}\right)^{k}+\sum_{k=0}^{N}\left(e^{-i z}\right)^{k}-1=\frac{1-e^{i(k+1) z}}{1-e^{i z}}+\frac{1-e^{-i(k+1) z}}{1-e^{-i z}}-1
$$

which can be seen to be equal to

$$
K_{N}(z)=\frac{\sin ((N+1 / 2) z)}{\sin (z / 2)}
$$

On the other hand it also follows from the first expression that since the integral of the exponential vanish we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(z) d z=1
$$

Therefore
$f_{N}(x)-f(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(z)(f(z-x)-f(x)) d z=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin ((N+1 / 2) z) g_{x}(z) d z$,
where

$$
g_{x}(z)=\frac{f(z-x)-f(x)}{\sin (z / 2)}
$$

is continuous if $f \in C^{1}$. Here $X_{N}(z)=\sqrt{2} \sin ((N+1 / 2) z), N=1, \ldots$ is an orthonormal family of functions $\left(X_{N}, X_{M}\right)=\delta_{M N}$. Therefore by the previous part

$$
\sum_{N=0}^{\infty}\left|\left(g_{x}, X_{N}\right)\right|^{2} \leq\|g\|^{2}
$$

and if we integrate both sides with respect to x

$$
2 \sum_{N=0}^{\infty}\left\|f-f_{N}\right\|^{2}=\sum_{N=0}^{\infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\left(g_{x}, X_{N}\right)\right|^{2} d x \leq\|g\|^{2}
$$

Since the sum is bounded it follows that the terms tend to 0 and hence $\left\|f_{N}-f\right\| \rightarrow 0$ as $N \rightarrow \infty$, i.e. f_{N} converges to f in L^{2}.

Summarizing we have proven that if $f \in C^{1}$ then the Fourier series converges to f in L^{2} and moreover

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}(f)\right|^{2}=\|f\|_{L^{2}}^{2}
$$

Moreover by Bessel's inequality the Fourier coefficients for the derivative satisfy

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}\left(f^{\prime}\right)\right|^{2} \leq\left\|f^{\prime}\right\|_{L^{2}}^{2}
$$

If we integrate by parts we get

$$
c_{k}\left(f^{\prime}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(x) e^{-i k x} d x=i k \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x=i k c_{k}(f) .
$$

Therefore

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}(f)\right|^{2}\left(1+k^{2}\right) \leq\left\|f^{\prime}\right\|^{2}+\|f\|^{2}
$$

Hence

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}\right| \leq \sqrt{\sum \frac{1}{1+k^{2}}} \sqrt{\sum\left(1+k^{2}\right)\left|c_{k}\right|^{2}}<\infty
$$

It follows that

$$
\sup _{x}\left|f_{N}(x)-f(x)\right|=\left|\sum_{|k|>N} c_{k}(f) e^{i k x}\right| \leq \sum_{|k|>N}\left|c_{k}(f)\right| \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

i.e. f_{N} converges to f uniformly.

Problem 2.1 Show that there is a constant C such that for all periodic $f \in C^{1}$ we have

$$
\sup _{x}|f(x)| \leq C\left(\left\|f^{\prime}\right\|+\|f\|\right)
$$

Problem 2.2 Show that for all periodic $f \in L^{2}$ we have

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}(f)\right|^{2}=\|f\|_{L^{2}}^{2}
$$

Hint: We have proven that this is true for any such $f \in C^{1}$. It is possible to approximate a function $f \in L^{2}$ by a sequence of functions $f_{n} \in C^{1}$ tending to f in L^{2} norm.

