Lecture 2: Convergence of Fourier series. Suppose that f(z) is a period
function f(x + 27) = f(z). Suppose also that f(z) is either in C! or L?. Then the
Fourier series converges uniformly respectively in L? to f(z):

f(x): Z Ckeikx,
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where the Fourier coefficients are given by

1 4 :
e / Fly) e~ dy.

In order to prove this let us first is to phrase it in a more general abstract setting.
Let us introduce the inner product and the norm
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Suppose that {Xj(x)}72, is an orthonormal family of functions i.e.
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Let Wi be the subspace spanned by all functions of the forms Zg:_ ~N kX We

want to find the function fy = Zé\;_ ~N kX € Wy that best approximates f, in
the sense that it makes the norm
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as small as possible. We have
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This sum is minimized for

e = cx(f) = (f, Xk).

for all k. Furthermore, with this choice of ¢, we conclude that
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This is called Bessel’s inequality. Moreover, there is equality if and only if fx

converges to f in L? norm.
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We now leave the setting and get into the analytical detailed estimates. We have
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Here by the formula for a geometric sum Zszo a? = (1 —a**1)/(1 — a);
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which can be seen to be equal to

sin (N +1/2)z)
sin (z/2)

KN(Z) =

On the other hand it also follows from the first expression that since the integral
of the exponential vanish we have
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Therefore
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where
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is continuous if f € C'. Here Xy(z) = v2sin((N +1/2)z), N = 1,... is an
orthonormal family of functions (Xy, Xps) = dprn. Therefore by the previous part
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and if we integrate both sides with respect to x
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Since the sum is bounded it follows that the terms tend to 0 and hence || fy —f|| — 0
as N — oo, i.e. fy converges to f in L2.
Summarizing we have proven that if f € C! then the Fourier series converges to

f in L? and moreover
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Moreover by Bessel’s inequality the Fourier coefficients for the derivative satisfy
)2
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If we integrate by parts we get
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It follows that
Sup|fN( z)| = | ch '] < Z ek (f)] =0, as k — oo.
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i.e. fy converges to f uniformly.
Problem 2.1 Show that there is a constant C such that for all periodic f € C! we
have

sup | f(z)] < CUIF I+ 11F1D

Problem 2.2 Show that for all periodic f € L? we have

o0

Y leHP=17117:

k=—o0

Hint: We have proven that this is true for any such f € C'. It is possible to
approximate a function f € L? by a sequence of functions f,, € C! tending to f in
L? norm.



