
Lecture 2: Convergence of Fourier series. Suppose that f(x) is a period
function f(x+ 2π) = f(x). Suppose also that f(x) is either in C1 or L2. Then the
Fourier series converges uniformly respectively in L2 to f(x):

f(x) =

∞∑
k=−∞

cke
ikx,

where the Fourier coefficients are given by

ck =
1

2π

∫ π

π

f(y) e−iky dy.

In order to prove this let us first is to phrase it in a more general abstract setting.
Let us introduce the inner product and the norm

(f, g) =
1

2π

∫ π

π

f(x)g(x) dx, ∥f∥ =
√
(f, f).

Suppose that {Xk(x)}∞k=1 is an orthonormal family of functions i.e.

(Xm, Xm) = δmn =

{
1, if m = n,

0, if m ̸= n

Let WN be the subspace spanned by all functions of the forms
∑N

k=−N ckXk. We

want to find the function fN =
∑N

k=−N ckXk ∈ WN that best approximates f , in
the sense that it makes the norm

∥f − fN∥

as small as possible. We have

∥f − fN∥2 = (f − fN , f − fN ) = ∥f∥2 + ∥fN∥2 − (f, fN )− (fN , f)

= ∥f∥2+
N∑

k=−N

|ck|2−ck(f,Xk)−ck(f,Xk) = ∥f∥2−
N∑

k=−N

|(f,Xk)|2+
N∑

k=−N

|ck−(f,Xk)|2

This sum is minimized for

ck = ck(f) = (f,Xk).

for all k. Furthermore, with this choice of ck we conclude that

∞∑
k=−∞

|ck(f)|2 ≤ ∥f∥2.

This is called Bessel’s inequality. Moreover, there is equality if and only if fN
converges to f in L2 norm.
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We now leave the setting and get into the analytical detailed estimates. We have

fN (x) =
N∑

k=−N

cke
ikx =

1

2π

∫ π

−π

N∑
k=−N

eik(x−y)f(y) dy

Here by the formula for a geometric sum
∑N

k=0 a
k = (1− ak+1)/(1− a);

KN (z) =
N∑

k=−N

eikz =
N∑

k=0

(eiz)k+
N∑

k=0

(e−iz)k −1 =
1− ei(k+1)z

1− eiz
+

1− e−i(k+1)z

1− e−iz
−1

which can be seen to be equal to

KN (z) =
sin ((N + 1/2)z)

sin (z/2)

On the other hand it also follows from the first expression that since the integral
of the exponential vanish we have

1

2π

∫ π

−π

KN (z) dz = 1

Therefore

fN (x)−f(x) =
1

2π

∫ π

−π

KN (z)
(
f(z−x)−f(x)

)
dz =

1

2π

∫ π

−π

sin ((N + 1/2)z)gx(z) dz,

where

gx(z) =
f(z − x)− f(x)

sin (z/2)

is continuous if f ∈ C1. Here XN (z) =
√
2 sin ((N + 1/2)z), N = 1, ... is an

orthonormal family of functions (XN , XM ) = δMN . Therefore by the previous part

∞∑
N=0

|(gx, XN )|2 ≤ ∥g∥2

and if we integrate both sides with respect to x

2

∞∑
N=0

∥f − fN∥2 =

∞∑
N=0

1

2π

∫ π

−π

|(gx, XN )|2 dx ≤ ∥g∥2

Since the sum is bounded it follows that the terms tend to 0 and hence ∥fN−f∥ → 0
as N → ∞, i.e. fN converges to f in L2.

Summarizing we have proven that if f ∈ C1 then the Fourier series converges to
f in L2 and moreover

∞∑
k=−∞

|ck(f)|2 = ∥f∥2L2
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Moreover by Bessel’s inequality the Fourier coefficients for the derivative satisfy

∞∑
k=−∞

|ck(f ′)|2 ≤ ∥f ′∥2L2

If we integrate by parts we get

ck(f
′) =

1

2π

∫ π

−π

f ′(x)e−ikx dx = ik
1

2π

∫ π

−π

f(x) e−ikx dx = ikck(f).

Therefore
∞∑

k=−∞

|ck(f)|2(1 + k2) ≤ ∥f ′∥2 + ∥f∥2.

Hence
∞∑

k=−∞

|ck| ≤
√∑ 1

1 + k2

√∑
(1 + k2)|ck|2 < ∞

It follows that

sup
x

|fN (x)− f(x)| = |
∑

| k|>N

ck(f)e
ikx| ≤

∑
| k|>N

|ck(f)| → 0, as k → ∞.

i.e. fN converges to f uniformly.
Problem 2.1 Show that there is a constant C such that for all periodic f ∈ C1 we
have

sup
x

|f(x)| ≤ C(∥f ′∥+ ∥f∥)

Problem 2.2 Show that for all periodic f ∈ L2 we have

∞∑
k=−∞

|ck(f)|2 = ∥f∥2L2

Hint: We have proven that this is true for any such f ∈ C1. It is possible to
approximate a function f ∈ L2 by a sequence of functions fn ∈ C1 tending to f in
L2 norm.


