
Lecture 3: The evolution equations and Fourier series. Let us consider the
simplest case of solving the linear wave equations on a circle:

(2.1) ∂2
t u− ∂2

xu = 0, u(0, x) = f(x), ut(0, x) = g(x),

were data are assumed to be periodic f(x+ 2π) = f(x) and g(x+ 2π) = g(x). We
we are looking for solution u(t, x) that is periodic in space u(t, x + 2π) = u(t, x).
(This is a simplified version of looking for solutions to the boundary problem with
boundary conditions u(t, 0) = u(t, 2π) = 0, which is the equation of a string.)
Periodic functions can be expanded in a Fourier series

(2.2) u(t, x) =
∞∑

k=−∞

ck(t) e
ikx.

If you don’t know this fact we can just say that we are looking for solutions of this
form. If this is to satisfy the wave equation then we must have

∂2
t u− ∂2

xu =
∞∑

k=−∞

(
c̈k(t) + k2ck(t)

)
eikx = 0

from which it follows that we must have

(2.3) c̈k(t) + k2ck(t) = 0,

for all k. Solving this linear ordinary differential equation gives

ck(t) = Ake
ikt +Bke

−ikt

The constants Ak and Bk are determined by expanding the initial data in Fourier
series

(2.4) u(0, x) = f(x) =
∞∑

k=−∞

dke
ikx, ut(0, x) = g(x) =

∞∑
k=−∞

eke
ikx

where
ck(0) = Ak +Bk = dk, ċk(0) = ik(Ak −Bk) = ek

If you don’t know the fact that all periodic functions can be expanded in Fourier
series we still have proven that the solution to (2.1) is given by (2.2) for all initial
data of the form (2.4).

This method works fine also for the other evolution equations:
Problem 2.1: Use Fourier series to find the solution to the initial value problem

for the heat equation

ut − uxx = 0, u(0, x) = f(x) = sin 3x,
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Now, it also tells us something about in which class we can expect solutions. By
Parsevals formula

1

2π

∫ 2π

0

|f(x)|2 dx =
∞∑

k=−∞

| ck|2, if f(x) =
∑

cke
ikx.

Formally, this follows from multiplying:∫ 2π

0

f(x)f(x) dx =
∞∑

k,ℓ=−∞

∫ 2π

0

ckcℓe
i(k−ℓ)x dx =

∞∑
k,=−∞

ckck2π

Since ∂x corresponds to multiplying the Fourier coefficients by ik we also get

1

2π

∫ 2π

0

|∂j
xf(x)|2 dx =

∞∑
k=−∞

| ck|2|k|2j

This is called the Hj Sobolev norm of f and denoted by ∥f∥Hj . As we shall see it
is a natural class to seek solutions in. If u ∈ Hj([0, 2π])) then u ∈ Cj−1([0, 2π]),
the class of j−1 times continuously differentiable functions. This follows for j = 1,
since for 0 ≤ x ≤ y;

u(y)− u(x) =

∫ y

x

u′(s) ds ≤
( ∫ y

x

ds
)1/2( ∫ 2π

0

u′(s)2 ds
)1/2

,

by Cauchy-Schwarz inequality. Repeating this for derivatives ∂j−1u in place of u
gives

∥u∥Cj−1 = sup
x

|∂j−1u(x)| ≤
(∫ 2ϕ

0

(∂ju(s))2 ds
)1/2

= ∥u∥Hj

If u ∈ H3 it follows that u ∈ C2 so its a classical solution of (2.1), i.e. the derivatives
are defined.

For the wave equation the Fourier coefficients are just multiplied by a complex
factors which don’t change the magnitude. In fact

ċk(t)
2 + k2ck(t)

2 = ċ(0)2 + k2ck(0)
2 = e2k + k2d2k

which is seen by taking the derivative of the left hand side and using (2.3):∑(
ċk(t)

2 + k2ck(t)
2
)
k2N =

(
e2k + k2

∑
d2k

)
k2N

or if u̇ denotes the time derivative of u:

∥u̇(t, ·)∥2HN + ∥u(t, ·)∥2HN = ∥g∥2HN + ∥f∥2HN

where ∥u(t, ·)∥Hk stands for the Hk norm of u(t, x) in the x variables for fixed t.
This means that if initial data are in a certain Sobolev space so is the solution be.
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For the heat equation its even better and the Fourier coefficients decay more for
positive times than initially.

The interesting thing is if we try to solve Laplace equation

utt + uxx = 0

with Fourier series, we get

ck(t) = ektAk + e−ktBk

so the Fourier modes are exponentially growing if say initially Ak ∼ e−
√

|k|, which
are the Fourier coefficients of a smooth function. The only way we can get the
Fourier coefficients to converge to 0 at positive times is that initial data are real
analytic, say Ak ∼ e−|k|.

Problem 2.2 Show that the backward heat equation

ut = −uxx

does not have any solution in Sobolev spaces even if initial data are analytic with
Fourier coefficients satisfying

ck ∼ e−|k|

In general one can think of an evolution equation, e.g. the wave equation, as an
infinity dimensional system

utt = Au

where A is the operator A = △ expressed in the infinite dimensional Fourier bases
{eikx} as multiplying the coefficient ck of eikx by −k2.
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Lecture 3: The Fourier transform. The Fourier transform F : f → f̂ is
defined to be

(3.1) f̂(ξ) =

∫
Rn

f(x) e−ix·ξ dx.

The Fourier transform is invertible, in fact we will prove Fourier’s inversion formula:

(3.2) f(x) =
1

(2π)n

∫
Rn

f̂(ξ) eix·ξ dx

The Fourier transform makes sense for a very general class of functions and even
distributions. However, it is natural to first define it for a more restrictive class
and afterwards extend the definition by continuity. This is the Schwartz class S
consisting of all infinitely differentiable functions that are rapidly decreasing:

sup
x

|xβ∂αϕ(x)| < ∞

for all multi-indices α and β. The importance of this class is that F : S → S.
which follows from the following identities for the Fourier transform:

(3.3) F : ∂jf(x) → iξj f̂(ξ), F : xjf(x) → i∂j f̂(ξ)

(3.3) follows from integrating by parts in (3.1) respectively differentiating below
the integral sign. That F : S → S now follows using (3.1) and integrating by parts

ξα∂β
ξ ϕ̂(ξ) =

∫
ξα(−i)|β|xβe−ix·ξϕ(x) dx = (−1)|α|(−i)|α|

∫
∂α
x

(
xβϕ(x)

)
dx

which can be bounded by supx
∣∣∂α

x

(
xβϕ(x)

)∣∣(1 + |x|)1+n
∫
(1 + |x|)−1−ndx ≤ C,

since ϕ ∈ S.
Note also that by changing variables we get two more simple properties

(3.4) F : f(ax) → a−nf̂(ξ/a), F : f(x+ h) → f̂(ξ)eih·ξ


